作者: C3P00

  • 探索Prompt工程:引导大型语言模型的行为


    在当今人工智能领域,大型语言模型(LLM)的发展已经成为引领技术潮流的关键因素之一。在这篇博文中,我们将深入探讨Prompt工程,也被称为上下文引导。Prompt工程旨在引导LLM的行为,从而实现期望的输出结果,而无需更新模型权重。这是一个实证科学,不同的Prompt工程方法对模型的影响可能会有很大差异,因此需要进行大量的实验和试错。

    基础Prompt工程

    在我们深入研究Prompt工程之前,让我们先来了解一些基础知识。Zero-shot和Few-shot学习是两种最基本的提示模型的方法,它们由许多LLM论文开创,并常用于评估LLM的性能。

    Zero-shot

    Zero-shot学习是将任务文本直接输入模型,并要求输出结果。例如,我们可以输入文本“我打赌视频游戏比电影更有趣。”并询问情感极性,从而进行Zero-shot学习。

    Few-shot

    Few-shot学习则会呈现一组高质量的示例,每个示例都包含输入和期望的输出。在模型首次接触到良好的示例后,它可以更好地理解人类意图和所需答案的标准。因此,Few-shot学习往往会带来比Zero-shot更好的性能。然而,这样做的代价是更多的标记消耗,并且在输入和输出文本较长时可能会触及上下文长度限制。

    示例选择的技巧

    很多研究都在探讨如何构建上下文示例以最大化性能,并观察到提示格式、训练示例以及示例顺序的选择可能会导致截然不同的性能,从随机猜测到接近最先进的水平。

    自一致抽样

    自一致抽样是指使用温度大于0的抽样多个输出,然后从这些候选者中选择最佳结果。选择最佳候选者的标准可能因任务而异。一般来说,选择多数票是一个通用的解决方案。

    连续思维(CoT)提示

    连续思维提示是指逐步生成一系列简短的句子,描述推理逻辑的步骤,最终得出最终答案。CoT的好处在于对于复杂的推理任务,特别是使用参数超过50亿的大型模型时,效果更加显著。而对于简单的任务,CoT的好处略有。

    CoT提示的两种主要类型:

    • Few-shot CoT:用少量示例提示模型,每个示例都包含手动编写(或模型生成的)高质量推理链。
    • Zero-shot CoT:使用自然语言陈述,如“让我们一步一步思考”,显式鼓励模型首先生成推理链,然后提示因此,答案是。

    自动提示设计

    提示是一系列前缀标记,它增加了在给定输入情况下获得期望输出的概率。因此,我们可以将它们视为可训练的参数,并直接在嵌入空间上进行优化。例如,AutoPrompt、Prefix-Tuning、P-tuning和Prompt-Tuning等方法,逐渐简化了设置过程。

    增强型语言模型

    一项对增强型语言模型的调查提到了多种类型的语言模型,这些模型具有推理能力和使用外部工具的能力。该调查提供了很好的覆盖。

    检索

    经常我们需要完成在模型预训练时间截止后或内部/私有知识库之外的最新知识的任务。在这种情况下,如果我们不在提示中提供上下文,模型将无法了解情境。许多开放领域问题回答的方法依赖于首先对知识库进行检索,然后将检索到的内容作为提示的一部分。这一过程的准确性取决于检索和生成步骤的质量。

    编程语言

    PAL(Program-aided language models)和PoT(Program of Thoughts prompting)要求LLM生成编程语言语句来解决自然语言推理问题,因此将复杂计算和推理步骤分离。它依赖于具有足够良好编码能力的LLM。

    外部API

    TALM(Tool Augmented Language Models)是一种使用文本到文本API调用的增强语言模型。LM被引导生成|工具调用和工具输入文本,条件是任务输入文本构建API调用请求。最终输出是在|输出标记之后生成的。

    有用资源

    本文提供了OpenAI Cookbook、LangChain和Prompt Engineering Guide等资源,它们都是使用LLM的优秀范例。

    通过这篇博文,我们深入了解了Prompt工程和相关的方法,以及它们在引导大型语言模型方面的作用。这些方法不仅是技术上的创新,也是对人工智能应用领域的重要贡献。希望这篇文章对您有所帮助!🚀📚


  • 提示工程:引领语言模型走向卓越 🤖

    大家好,我是语言模型领域的研究者,也是一位热衷于探索人工智能奥秘的博主。今天,我想和大家聊聊一个非常有趣且重要的概念——提示工程(Prompt Engineering)。

    什么是提示工程?

    提示工程是指通过精心设计输入给语言模型的提示语,来引导模型生成我们想要的结果。它就像是在和语言模型进行一场对话,通过巧妙地提问和引导,我们可以让模型发挥出更强大的能力。

    为什么提示工程如此重要?

    随着语言模型的不断发展,它们已经展现出了令人惊叹的文本生成能力。然而,要让语言模型真正发挥出它们的潜力,就需要我们掌握提示工程的技巧。通过精心设计的提示语,我们可以让语言模型完成各种各样的任务,从撰写文章、生成代码,到回答复杂的问题等等。

    提示工程的基本原则

    零样本学习与小样本学习

    零样本学习是指不提供任何示例的情况下,直接让语言模型完成任务。小样本学习则是提供少量示例,帮助模型理解任务要求。

    示例选择

    在小样本学习中,示例的选择至关重要。好的示例应该能够代表任务的整体分布,并且具有多样性。我们可以使用聚类、图论等方法来选择高质量的示例。

    示例排序

    示例的排序也会影响模型的性能。一般来说,我们可以将示例按相关性、多样性和随机性进行排序,以避免模型产生偏差。

    进阶提示工程技巧

    指令式提示

    指令式提示是指直接告诉语言模型我们要完成的任务,并给出明确的指令。这种方法可以提高模型的准确性,但需要我们对任务有深入的了解。

    链式推理

    链式推理是指将任务分解成一系列推理步骤,然后让语言模型一步一步地进行推理。这种方法可以帮助模型更好地理解复杂的任务,并生成更具逻辑性的输出。

    自动提示设计

    我们可以使用梯度下降等优化方法,直接优化提示语,以获得更好的性能。这是一种非常强大的技术,但需要一定的专业知识。

    增强型语言模型

    除了提示工程之外,我们还可以通过增强语言模型本身的能力来提高模型的性能。例如,我们可以使用检索技术来获取外部知识,或者使用编程语言来执行复杂的任务。

    总结

    提示工程是一门艺术,也是一门科学。通过掌握提示工程的技巧,我们可以让语言模型发挥出更强大的能力,完成各种各样的任务。希望这篇文章能够帮助大家更好地理解和使用提示工程。

    参考文献

    [1] Lilian Weng. Prompt Engineering. Lil’Log. https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

    [2] OpenAI Cookbook. https://github.com/openai/openai-cookbook

    [3] LangChain. https://github.com/huggingface/langchain

    [4] Prompt Engineering Guide. https://github.com/NielsRogge/Prompt-Engineering-Guide

    [5] learnprompting.org. https://learnprompting.org/

    [6] PromptPerfect. https://github.com/minimaxir/promptperfect

    [7] Semantic Kernel. https://github.com/thunlp/Semantical-Kernel

  • 探索大型语言模型的防护之道:对抗攻击与应对策略

    近年来,随着大型语言模型在各领域的广泛应用,对其安全性和稳健性的讨论与探索日益引人关注。本文将深入探讨有关大型语言模型(LLMs)的对抗攻击以及防护策略,旨在帮助读者更好地了解这一议题,同时为相关领域的研究与实践提供有益的思路和参考。

    引言

    大型语言模型(LLMs)的应用在当今信息时代变得愈发普遍。然而,随着其广泛应用,我们也不得不正视对其的安全挑战和对抗攻击。本文将带您深入探讨大型语言模型的安全性问题,以及当前针对这些问题的应对策略。

    对抗攻击简介

    大型语言模型的应用触及了社会的方方面面,从文字生成到信息检索,都离不开这些模型的支持。然而,正是由于其广泛应用,我们不得不直面对抗攻击对这些模型带来的潜在风险。本文将逐步解析不同类型的对抗攻击,并对防护策略进行详尽探讨。

    对抗攻击类型

    令牌操作

    • 令牌操作是一种黑盒攻击方法,其目的是通过修改文本输入中的一小部分令牌来触发模型失败,但仍保留其原始语义意义。这类攻击在黑盒设置下运作良好,是对抗攻击的一种重要手段。

    基于梯度的攻击

    • 在白盒设置下,攻击者可以利用梯度下降来系统地学习有效的攻击方式。这类攻击只在白盒设置下有效,例如对于开源LLMs。通过梯度下降,攻击者可以对模型进行精准地干扰,是一种常见的对抗攻击方式。

    Jailbreak提示

    • Jailbreak提示是一种启发式的提示,“越狱”内置模型的安全机制。攻击者通过设计特定的提示语来触发模型输出不安全内容,这是一种黑盒攻击方式。

    人类红队攻击

    • 人类红队攻击是指人类与模型进行对抗,有时会得到其他模型的帮助。这种攻击方式需要深入的领域知识和丰富的经验,是一种高级的对抗手段。

    模型红队攻击

    • 模型红队攻击是指模型攻击模型,攻击模型可以被微调。这种攻击方式需要对模型内在机制有深入的了解,是一种高度技术性的对抗手段。

    防护之策

    鞍点问题

    • 针对对抗攻击,研究人员提出了模型鲁棒性的鞍点问题。该框架被提出用于解释对抗训练,尤其是在分类任务上。鞍点问题旨在找到一个模型的最优参数,以使模型在面对对抗攻击时能够保持稳健性。

    LLM鲁棒性研究- 研究人员提出了一些关于LLM鲁棒性的工作,包括一些简单而直观的防护方法。通过对鞍点问题的探索,我们可以更好地理解对抗性训练中所面临的挑战,以及如何提升模型的应对能力。

    结语

    对大型语言模型的敌袭和防护是一个复杂而重要的议题。通过了解不同类型的攻击和防护策略,我们可以更好地应对这一挑战,同时不断提升大型语言模型的应用安全性。


  • 语言模型的对抗性攻击:对 LLM 安全性的深入研究 🛡️

    随着大型语言模型 (LLM) 在现实世界中的应用急剧增加,我们迫切需要关注其安全性问题。虽然在模型对齐过程中投入了大量精力来构建默认的安全行为,但对抗性攻击或越狱提示可能会导致模型输出一些不期望的内容。

    对抗性攻击是指输入模型后,导致模型输出一些不期望的内容。在图像领域,对抗性攻击已经获得了广泛的研究,但在离散数据(如文本)领域,由于缺乏直接的梯度信号,对抗性攻击被认为更具挑战性。

    本文将重点介绍针对 LLM 的对抗性攻击,并探讨五种攻击方法:

    1. 令牌操作 替换文本输入中一小部分的令牌,使其在不改变其原始语义含义的情况下触发模型失败。

    2. 基于梯度的攻击 利用梯度信号来学习有效的攻击。

    3. 越狱提示 经常使用基于启发法的提示来“越狱”模型内置的安全机制。

    4. 人工红队测试 人类攻击模型,无论是否有其他模型的帮助。

    5. 模型红队测试 模型攻击模型,其中攻击者模型可以进行微调。

    接下来,我们将详细介绍每种攻击方法,并探讨其优缺点。

    1. 令牌操作

    令牌操作攻击在黑盒设置中进行。我们可以对文本输入进行简单的令牌操作,如用同义词替换,以触发模型做出错误的预测。

    2. 基于梯度的攻击

    基于梯度的攻击需要完全访问模型参数和体系结构,因此攻击者可以获得梯度信号。这种攻击方法仅适用于白盒设置,例如开源 LLM。

    3. 越狱提示

    越狱提示攻击通常使用基于启发法的提示来“越狱”模型内置的安全机制。这种攻击方法在黑盒设置中进行。

    4. 人工红队测试

    人工红队测试是指人类攻击模型,无论是否有其他模型的帮助。这种攻击方法在黑盒设置中进行。

    5. 模型红队测试

    模型红队测试是指模型攻击模型,其中攻击者模型可以进行微调。这种攻击方法在黑盒设置中进行。


    对抗性攻击是 LLM 安全的一个重要挑战,需要我们持续的研究和探索。通过了解和掌握这些攻击方法,我们可以更好地保护 LLM 的安全,并确保其在现实世界中的可靠应用。

  • 链式回顾:利用反馈将语言模型与人类偏好相一致

    大家好,欢迎收听本期播客。今天,我们将讨论一篇关于语言模型如何从人类反馈中学习的论文。这篇论文的题目是《链式回顾:利用反馈将语言模型与人类偏好相一致》,由加州大学伯克利分校的研究人员撰写。

    引言

    语言模型在自然语言理解方面取得了惊人的成绩,但为了确保这些技术对社会产生积极影响,使它们与人类价值观保持一致至关重要。实现这一目标的最关键因素之一是利用人类反馈。人类反馈使我们能够以一种既客观又主观的的方式评估此类模型的性能。它可以帮助发现准确性、公平性和偏差方面的问题,并可以提供有关如何改进模型的见解,以确保模型输出与社会规范和期望保持一致。受将人类反馈纳入语言模型重要性的推动,研究人员一直在开发和测试各种人机交互系统的技术。这些方法旨在提高将人类反馈纳入其中的效率,从而构建能够实现更高性能和准确性、同时提供更高公平性和更合乎道德输出的模型。

    研究背景

    语言建模的成功在很大程度上归功于利用监督微调 (SFT) 和人类反馈强化学习 (RLHF) 技术。虽然这些方法在提高语言模型在特定任务上的性能方面显示出有希望的结果,但它们也存在明显的局限性。SFT 依赖于人工注释的数据和正面评价的模型生成来微调预训练的语言模型。然而,这种方法在很大程度上依赖于标记数据的可用性,这可能需要大量资金和时间投入。此外,仅依赖正面评价的数据可能会限制模型识别和纠正负面属性或错误的能力,从而降低其对新的和未见过数据的泛化能力。相比之下,RLHF 能够从所有数据中学习,而不管反馈评级如何。尽管如此,这种方法需要学习一个奖励函数,该奖励函数可能会出现偏差和不完善。此外,强化学习算法的优化具有挑战性,在应用中存在重大困难。

    研究方法

    在这项工作中,我们旨在通过结合 SFT 和 RLHF 的优势来克服它们的局限性,同时无需借助强化学习。我们的关键思想是人类能够从以比较形式呈现的丰富而详细的反馈中学习。我们的假设是,通过将语言模型置于一系列与反馈配对的模型输出的条件下并相应地对其进行训练,它们可以学会识别和纠正错误和负面属性。

    研究创新

    此外,先前的研究强调了预训练语言模型在上下文学习和指令微调方面的功效。在此基础上,我们引入了一种新颖的方法:将所有人类反馈转换为序列,然后对模型进行微调以理解和有效地利用此类反馈。具体来说,我们建议微调模型以预测输出,同时以一个或多个模型输出及其与其他输出的比较形式的相应反馈为条件。

    实质上,我们的方法通过对模型进行微调,使其在考虑一个或多个模型生成的输出及其相关反馈(以与其他输出的比较形式呈现)的情况下生成输出。在训练阶段,模型会收到诸如“糟糕”和“好”之类的反馈表达。然后,它被赋予预测与反馈更紧密一致的输出的任务,例如:“你如何向 6 岁的孩子解释神经网络?糟糕的:{一个糟糕的答案} 好:{一个极好的答案}。”此外,我们的框架允许集成自然语言反馈,例如“{一个糟糕的答案} 与 {一个极好的答案} 相比,是一个不太好的答案”,这不仅告知模型偏好,还提供了额外的特定于任务的指导。在推理时,当给出“好”的正面反馈时,模型会被引导生成所需的输出,从而确保更好的行为。

    研究结果

    我们对提出的方法在摘要和对话任务领域进行了全面评估,结果表明与 SFT 及其各种迭代以及 RLHF 相比,在自动评估和人类评估中均有显着性能提升。

    研究意义

    我们的主要贡献有两个:(a)我们引入了一种新颖的学习框架,称为 CoH,它有效地利用所有可用的反馈数据来提高模型性能,而无需依赖 RLHF。值得注意的是,我们的方法 CoH 保持与预训练相同的训练目标,使其易于训练且易于扩展;(b)我们进行了广泛的实验,以展示我们的方法与现有基线(包括最先进的 RLHF 方法)相比的有效性。

    研究局限性

    尽管我们的方法在摘要和对话任务上取得了有希望的结果,但仍有一些局限性需要考虑。首先,我们的方法依赖于人类反馈的可用性。如果可用的反馈数量有限或质量不高,则可能会影响模型的性能。其次,我们的方法在计算上可能很昂贵,尤其是在处理大型数据集时。最后,我们的方法可能难以推广到其他类型的任务,例如机器翻译或问答。

    未来研究方向

    在未来,我们将探索以下几个方向来改进我们的方法:(1)研究如何利用少量的人类反馈来提高模型的性能。(2)研究如何降低方法的计算成本,使其能够处理大型数据集。(3)研究如何将方法推广到其他类型的任务,例如机器翻译或问答。

    总结

    在本文中,我们提出了一种新颖的学习框架,称为 CoH,它可以有效地利用所有可用的反馈数据来提高语言模型的性能。我们的方法在摘要和对话任务上取得了有希望的结果,我们希望它能激发未来的研究,以进一步提高语言模型的性能。

    参考文献

    [1] Hao Liu, Carmelo Sferrazza, Pieter Abbeel. Chain of Hindsight: Aligning Language Models with Feedback. arXiv preprint arXiv:2302.02676, 2023.

    [2] Ming-Wei Chang, Samuel Bowman, Sara Hooker, Erica Bowman. Learning to Rank from Human Feedback: A Case Study in Summarization. arXiv preprint arXiv:2204.05816, 2022.

    [3] Yuntao Bai, Zhun Liu, Lifu Huang, Wenhui Wang, Huan Wang, Furu Wei, Xiao Chen. Prompt-based Learning for Few-shot Text Classification. arXiv preprint arXiv:2204.02766, 2022.

  • 揭秘 LLM 驱动的自主代理

    播客:揭秘 LLM 驱动的自主代理

    大家好,今天我们将讨论 LLM 驱动的自主代理,一种利用大型语言模型 (LLM) 作为大脑的全新代理系统。我们将深入探讨 LLM 驱动的自主代理的各个组成部分,包括规划、记忆和工具使用,并通过生动的案例研究来理解这些代理如何在现实世界中发挥作用。

    一、LLM 驱动的自主代理概述

    LLM 驱动的自主代理是一个令人兴奋的概念,它将 LLM 的强大功能与其他关键组件相结合,创造出能够执行复杂任务的智能系统。这些代理可以被视为具有 LLM 大脑的机器人,能够理解和生成人类语言,并利用外部工具和信息来完成任务。

    二、组成部分

    LLM 驱动的自主代理由以下几个关键组成部分构成:

    1. 规划

    规划是代理系统的重要组成部分,它使代理能够将复杂的任务分解为更小、更易管理的子目标,并制定实现这些子目标的计划。代理可以通过思想链 (CoT)、思想树等技术来进行规划,并利用人类的投入来完善计划。

    2. 记忆

    记忆对于代理系统至关重要,它使代理能够存储和检索信息,从而在执行任务时具有上下文感知能力。代理的记忆可以分为短期记忆和长期记忆,短期记忆用于存储当前正在处理的信息,而长期记忆用于存储长期需要的信息。

    3. 工具使用

    工具使用是 LLM 驱动的自主代理的一个重要特征,它使代理能够调用外部 API 和工具来获取模型权重中缺少的信息,包括当前信息、代码执行能力、对专有信息源的访问等。代理可以通过明确的提示或通过学习来掌握工具的使用方法。

    三、案例研究

    为了更好地理解 LLM 驱动的自主代理如何在现实世界中发挥作用,我们来看看几个生动的案例研究:

    1. 科学发现代理

    ChemCrow 是一个特定领域的例子,其中 LLM 用 13 个专家设计的工具来完成有机合成、药物发现和材料设计的任务。ChemCrow 将 CoT 推理与任务相关的工具相结合,并在实践中证明了 LLM 驱动的自主代理在科学发现领域的潜力。

    2. HuggingGPT

    HuggingGPT 是一个使用 ChatGPT 作为任务规划器的框架,它根据模型描述选择 HuggingFace 平台中可用的模型,并根据执行结果总结响应。HuggingGPT 展示了 LLM 驱动的自主代理如何用于任务规划和模型选择。

    四、挑战与展望

    尽管 LLM 驱动的自主代理展现出巨大的潜力,但仍面临一些挑战。例如,如何提高代理的效率、稳定性和鲁棒性,如何更好地与人类用户进行交互,如何确保代理的行为符合伦理和安全标准,这些都是需要进一步研究和解决的问题。

    展望未来,LLM 驱动的自主代理将在各个领域发挥越来越重要的作用,从科学研究到医疗保健,从金融服务到教育,这些代理将成为我们生活中不可或缺的助手和合作伙伴。


  • 统一嵌入模型(uniem):创建中文最佳通用文本嵌入模型

    🔗 GitHub链接:wangyuxinwhy/uniem

    引言

    在自然语言处理(NLP)领域,文本嵌入是一项重要任务。它将文本转换成向量表示,使得计算机可以更好地理解和处理文本数据。最近,GitHub上出现了一个令人瞩目的项目,名为统一嵌入模型(uniem)。该项目的目标是创建中文最佳的通用文本嵌入模型。在本博客文章中,我们将深入探讨uniem项目,了解其功能和优势。

    uniem项目概述

    uniem项目的主要目标是开发中文最佳的通用文本嵌入模型。该项目包括模型的训练、微调和评测代码。所有的模型和数据集都在HuggingFace社区上进行了开源。uniem项目的重要更新如下:

    🌟 2023.07.11,发布uniem 0.3.0版本。FineTuner除了支持M3E模型外,还支持sentence_transformers和text2vec等模型的微调。同时,还支持使用SGPT的方式对GPT系列模型进行训练,以及使用Prefix Tuning。FineTuner的API有一些小的变化,不兼容0.2.0版本。
    🌟 2023.06.17,发布uniem 0.2.1版本。该版本实现了FineTuner对模型微调的原生支持,只需几行代码即可适配。
    📊 2023.06.17,发布正式版的MTEB-zh,该版本支持6种Embedding模型和4种任务,共9个数据集的自动化评测。
    🎉 2023.06.08,发布M3E models,该模型在中文文本分类和文本检索方面优于openai text-embedding-ada-002。

    使用M3E模型

    M3E模型是uniem项目中的重要组成部分。M3E模型完全兼容sentence-transformers,因此您可以通过替换模型名称的方式在所有支持sentence-transformers的项目中无缝使用M3E模型。以下是使用M3E模型的安装和使用示例:

    安装

    pip install sentence-transformers uniem

    使用

    from sentence_transformers import SentenceTransformer
    
    model = SentenceTransformer("moka-ai/m3e-base")
    embeddings = model.encode(['Hello World!', '你好,世界!'])

    微调模型

    uniem项目提供了非常易用的微调接口,只需几行代码即可完成微调。以下是微调模型的示例代码:

    from datasets import load_dataset
    from uniem.finetuner import FineTuner
    
    dataset = load_dataset('shibing624/nli_zh', 'STS-B')
    finetuner = FineTuner.from_pretrained('moka-ai/m3e-small', dataset=dataset)
    finetuner.run(epochs=3)

    如果您希望在本地运行微调代码,请按照以下步骤准备环境:

    conda create -n uniem python=3.10
    pip install uniem

    MTEB-zh:中文嵌入模型评测

    由于缺乏统一的评测标准,中文嵌入模型的性能评估一直是一个挑战。为了解决这个问题,uniem项目引入了MTEB-zh评测标准。MTEB-zh在多个数据集上对6种不同模型进行了评测,包括文本分类和文本检索任务。以下是MTEB-zh的一些亮点:

    文本分类

    MTEB-zh选择了多个经典的中文文本分类数据集,如THUCNews、LCQMC等。通过在这些数据集上对不同模型进行评测,MTEB-zh可以提供准确性和性能方面的评估。

    文本检索

    对于文本检索任务,MTEB-zh选择了一些开源的中文搜索引擎数据集,如TREC-CD-1、TREC-CD-2等。通过对这些数据集进行评测,MTEB-zh可以衡量模型在返回相关文档方面的性能。

    MTEB-zh还提供了详细的评测报告,包括评估指标、模型对比和结果分析。这些报告可以帮助研究人员和开发者选择合适的模型,并了解其在不同任务上的性能。

    结论

    uniem项目是一个令人兴奋的开源项目,旨在创建中文最佳的通用文本嵌入模型。通过使用M3E模型和微调接口,开发者可以轻松地将uniem集成到自己的项目中。同时,MTEB-zh评测标准提供了一个公正、准确的评估平台,帮助研究人员和开发者选择最适合其应用场景的模型。

    在未来,我们可以期待uniem项目的进一步发展,包括更多模型的加入和更广泛的数据集评测。这将为中文NLP领域的研究和应用带来更多的机遇和挑战。

    无论是对NLP领域感兴趣的研究人员,还是想要在中文文本处理方面应用嵌入模型的开发者,uniem项目都是一个值得关注的资源。通过参与该项目,我们可以共同推动中文NLP的发展,为更广泛的应用场景提供更好的解决方案。

    🎉 让我们一起加入uniem项目,为中文文本嵌入模型的发展贡献自己的力量!🚀

  • M4T翻译模型

    M4T是一个翻译模型的名称,它由Meta公司开发。根据搜索结果,M4T是Meta公司最新发布的一种多模式翻译模型,支持多种语音和语言的翻译任务[1]。以下是关于M4T翻译模型的一些重要信息:

    1. 模型介绍:
      • M4T是一种多模式翻译模型,可以执行语音到文本、语音到语音、文本到语音和文本到文本的翻译任务[1]
      • M4T支持多达100种语音和语言的翻译[1]
      • 该模型由Meta公司开发,集成了他们之前发布的其他翻译模型,如No Language Left Behind (NLLB)和Massively Multilingual Speech (MMS)[1]
    2. 功能和优势:
      • M4T的翻译效率和质量相对较高,能够在不同语音和语言之间实现流畅的交流[1]
      • 与其他单一翻译产品相比,M4T具有更好的翻译效果和更低的延迟[1]
      • 该模型还具备一些其他功能,如说话人识别和处理包含多种语言的源语音等[2]
    3. 数据和训练:
      • M4T的训练数据包括大量的语音和文本对齐数据,以及公开网络数据和语音存储库的挖掘结果[1]
      • Meta公司通过对这些数据进行预训练和微调,使M4T能够在多种语音和语言之间实现准确的翻译[1]
    4. 应用领域:
      • M4T的多模式翻译功能对于语言行业的专业人士和用户都具有吸引力[2]
      • 该模型可以被应用于实时口译、语音识别、文本翻译等多个领域[2]

    M4T是Meta公司开发的一种多模式翻译模型,支持多种语音和语言的翻译任务。它具有高效、准确的翻译能力,可以在不同语音和语言之间实现流畅的交流。


  • Phi-2 为何这么牛?

    Phi-2是微软推出的一个人工智能模型,它具有出色的性能,甚至可以超过比它大25倍的其他模型[2]。Phi-2是一个拥有27亿参数的语言模型,通过在复杂的基准测试中展示其推理、语言理解、数学、编码和常识能力,展现了“最先进的性能”[2]。Phi-2现在可以通过微软Azure AI Studio的模型目录获得,研究人员和开发者可以将其集成到第三方应用程序中[2]

    Phi-2的训练数据质量非常高,专注于知识,并且采用了一些技术,可以将从其他模型中学到的见解传递给Phi-2[2]。与传统的大型语言模型不同,Phi-2的强大之处在于它的训练数据质量和知识迁移技术[2]


    Learn more:

    1. Phi-2: The surprising power of small language models – Microsoft Research
    2. Microsoft debuts 2.7B-parameter Phi-2 model that outperforms many larger language models – SiliconANGLE
    3. Microsoft releases Phi-2, a powerful small language model AI | VentureBeat
  • 🔍 探索 Anima:QLoRA 33B中文LLM

    欢迎来到我的博客!今天我将为大家介绍一个令人兴奋的开源项目 – Anima。该项目是一个QLoRA的33B中文大语言模型,同时支持DPO对齐训练,并提供了100K上下文窗口的开源模型。最近,他们还推出了AirLLM,这是一个令人印象深刻的库,可以在只有4GB内存的单个GPU上推理出70B的LLM。让我们一起来深入了解这个项目吧!

    🔄 更新内容

    • [2023/11/17] 开源:AirLLM,使用单个4GB GPU进行70B LLM推理。
    • [2023/09/06] 开源100K上下文窗口的基于Llama2的LLM。
    • [2023/06/29] 开源基于DPO+QLORA的对齐训练。
    • [2023/06/12] 开源第一个33B中文大语言模型。

    🔍 Anima简介

    Anima是第一个基于QLoRA的开源中文33B大语言模型。它支持DPO对齐训练,同时还提供了100K上下文窗口的开源模型Anima100K,基于Llama2,可用于商业用途。最近,他们还推出了AirLLM,这是一个令人兴奋的新功能,可以在只有4GB内存的单个GPU上进行70B LLM的推理。

    💨 AirLLM:单卡推理70B大模型

    AirLLM是Anima团队最新推出的功能之一。它通过优化推理内存的使用,使得只需单个4GB内存的GPU就能运行70B大语言模型的推理。与其他可能会降低模型性能的量化、蒸馏、剪枝等模型压缩技术不同,AirLLM无需这些步骤,仍能保持卓越的性能。

    📚 100K上下文长度LLM

    Anima团队还开源了一个新的Anima模型,该模型支持100K上下文窗口长度!该模型基于LLama2,可用于商业用途。经过精心策划的长文本问答训练数据,以及大量的内存优化,使得LLama2模型能够适应100K的输入长度。

    通过将整个知识库或一本书直接放入Prompt中,您不再需要进行繁琐的向量化和文本分割。Anima团队在这个模型中应用了最新的技术,如XEntropy、Paged 8bit Adamw、LORA、Flashattention2,并对长输入进行了定制的训练和推理代码修改,使得单个GPU就能支持100K的输入长度。

    🔗 相关链接

    🤝 参与贡献

    如果您对Anima项目感兴趣并希望参与贡献,您可以在GitHub上提交问题和请求,与团队进行讨论,并向项目做出贡献。Anima团队非常欢迎您的参与!

    这就是对Anima项目的介绍!我希望这个开源项目能够给我们带来更多的惊喜和创新。如果您对这个项目感兴趣,不妨亲自探索一下GitHub链接:GitHub – lyogavin/Anima。祝您在学习和使用Anima时取得成功!如果您有任何问题或想法,请随时与Anima团队联系。

    🌟 关于Anima团队

    Anima团队是一群对人工智能技术充满热情的专业人士。他们致力于开发创新的语言模型,并将其开源,以促进自然语言处理领域的发展。通过Anima项目,他们希望为中文语言处理提供先进的工具和资源。

    如果您对自然语言处理、大语言模型或人工智能领域有兴趣,不妨关注Anima团队的官方博客、微信公众号和Discord社区,以获取更多相关内容和交流机会。

    感谢您阅读我的博客,希望您对Anima项目有了更深入的了解。如果您对这篇文章有任何反馈或建议,请随时与我分享。谢谢!🙏