闪电注意力的魅力:加速计算、节省显存、IO感知的精准注意力

大家好,欢迎收听本期播客。今天,我们将讨论一个非常有趣且重要的深度学习模型——闪电注意力(Flash Attention)。闪电注意力是一种新的注意力机制,它可以显著地提高Transformer模型的计算效率和显存利用率。 什么是注意力机制? 在介绍闪电注意力之前,我们先来简单回顾一下什么是注意力机制。注意力机制是一种神经网络模型,它可以帮助模型专注于输入序列中最重要的部分。在Transformer模型中,注意力机制被用来计算查询序列(Query)和键序列(Key)之间的相关性,然后将相关性作为权重,对值序列(Value)进行加权求和,得到输出序列。 为什么需要闪电注意力? 标准的注意力机制虽然功能强大,但它在计算和存储方面都非常昂贵。这是因为,标准注意力机制需要计算查询序列和键序列之间所有的相关性,这对于长序列来说是一个非常耗时的过程。此外,标准注意力机制还需要存储所有的相关性矩阵,这对于大规模模型来说是一个非常大的存储开销。 闪电注意力是如何解决这些问题的? 闪电注意力通过将注意力机制分解成多个小块来解决这些问题。每个小块只计算查询序列和键序列中的一小部分的相关性,然后将这些小块的结果组合起来得到最终的注意力矩阵。这种方法大大降低了计算和存储的开销。 闪电注意力的优势 闪电注意力具有以下几个优势: 闪电注意力的应用 闪电注意力可以广泛应用于各种自然语言处理任务,例如机器翻译、文本摘要、问答系统等。它还可以应用于计算机视觉任务,例如图像分类、目标检测、图像分割等。 总结 闪电注意力是一种新的注意力机制,它可以显著地提高Transformer模型的计算效率和显存利用率。闪电注意力具有计算效率高、显存利用率高、精度高等优点,可以广泛应用于各种自然语言处理和计算机视觉任务。 如果你对闪电注意力感兴趣,可以进一步阅读以下资料:

惊艳亮相!coqui-ai/TTS——所向披靡的深度学习文本转语音工具包

大家好!今天,我要隆重介绍一个令人惊叹的项目——coqui-ai/TTS,一个功能强大的深度学习文本转语音工具包。它在研究和生产领域久经考验,能够将冰冷的文字转换成富有情感和个性的语音。coqui-ai/TTS 由才华横溢的 coqui.ai 团队开发,旨在为语音合成提供一站式解决方案。 🌈 一览众山小:TTS 的强大功能 coqui-ai/TTS 拥有令人难以置信的多功能性,它能够: ⚡️ 一学就会:coqui-ai/TTS 的简单上手指南 coqui-ai/TTS 的使用非常简单,即使你不是技术专家,也能快速上手。以下是如何使用 TTS 的步骤: 🛠️ 庖丁解牛:coqui-ai/TTS 的技术解析 coqui-ai/TTS 的背后是强大的深度学习技术。它使用了一种叫做 Tacotron 2 的神经网络模型,该模型能够将文本转换成语音频谱。然后,TTS 使用另一个叫做 WaveNet 的神经网络模型将语音频谱转换成实际的语音。 TTS 还包含了许多其他组件,如说话人编码器、声码器和语音转换模型。这些组件共同协作,确保 TTS 能够生成高质量的语音。 📚 学无止境:coqui-ai/TTS 的进阶教程 如果你想更深入地了解 TTS,这里有一些进阶教程: 🌍 桃李满天下:coqui-ai/TTS 的广泛应用 coqui-ai/TTS 已经被广泛应用于各种领域,包括: 💡 点石成金:coqui-ai/TTS 的未来展望 TTS 的未来发展潜力巨大。它可以应用于更多领域,如医疗保健、交通运输和金融。随着技术的不断进步,TTS 将变得更加强大和智能,为我们带来更多惊喜。 🎁 结语 coqui-ai/TTS 是一个令人惊叹的工具包,它可以将文本转换成自然流畅的语音。它在研究和生产领域久经考验,拥有强大的功能和广泛的应用。如果你正在寻找一个能够满足你语音合成需求的工具,那么 TTS 绝对是你的不二之选。

用链式知识提示增强语言模型的推理能力

摘要: 最近,基于思想链(CoT)的提示在复杂推理任务中取得了成功,其目标是设计一个简单的提示,如“让我们逐步思考”或多个具有精心设计的理由的上下文示例,以引导大型语言模型(LLM)生成中间推理步骤。然而,生成的理由通常会伴随着错误,导致不真实和不诚实的推理链。为了减轻这种脆弱性,我们提出了一种新颖的基于知识的链式提示(CoK),目标是引导 LLM 生成形式为结构三元组的明确知识证据。这受到了我们人类行为的影响,即在回答复杂问题之前,我们可以在脑海中绘制思维导图或知识图作为推理证据。得益于 CoK,我们进一步引入了一种 F^2 验证方法,以估计推理链在事实性和忠实性方面的可靠性。对于不可靠的回答,可以指出错误的证据以引导 LLM 重新思考。大量实验证明,我们的方法可以进一步提高常识、事实、符号和算术推理任务的性能。 正文: 1. 介绍 2. 相关工作 3. 方法 4. 实验设置 5. 结论

JiuZhang 2.0:面向多任务数学问题求解的统一中文预训练语言模型

摘要: 尽管预训练语言模型 (PLM) 近期推动了数学推理研究的进展,但它们并非专门设计为有能力的多任务求解器,在实际应用中存在多任务部署成本高(例如,为一项任务复制一个模型)和复杂数学问题的性能较差的问题。为了解决这些问题,我们在本文中提出了 JiuZhang 2.0,这是一个专门针对多任务数学问题求解的统一中文 PLM。我们的想法是保持一个中等规模的模型,并采用“跨任务知识共享”来提高模型在多任务设置中的能力。特别地,我们构建了一个混合专家 (MoE) 架构来建模数学文本,以便捕获跨任务的通用数学知识。为了优化 MoE 架构,我们设计了多任务持续预训练和多任务微调策略,以进行多任务适配。这些训练策略能够有效地分解来自任务数据中的知识,并通过专家网络建立跨任务共享。为了进一步提高解决不同复杂任务的泛化能力,我们利用大型语言模型 (LLM) 作为互补模型,通过上下文学习,迭代地优化我们 PLM 生成的解决方案。大量的实验已经证明了我们模型的有效性。 关键词:预训练语言模型,数学推理,多任务学习,混合专家,持续预训练,微调,大型语言模型,上下文学习 正文: 1. 介绍 数学推理是人工智能的一个重要领域,具有广泛的应用,如自然语言处理、机器翻译、信息检索等。近年来,随着预训练语言模型 (PLM) 的发展,数学推理取得了显著的进展。PLM 在大规模数学语料库上进行预训练,能够在一定程度上理解数学公式和逻辑,在各种数学相关任务上取得更好的性能。 然而,基于 PLM 的方法仍然存在两个主要局限性:任务性能有限和维护成本高。一方面,由于 PLM 的容量有限,在复杂数学问题上,其性能往往不佳。另一方面,由于 PLM 需要为每个任务单独训练,这导致了维护成本高的问题。 为了克服这些问题,大型语言模型 (LLM) 被引入解决数学问题。LLM 具有更强的数学推理能力,能够解决更复杂的数学问题。然而,LLM 在任务或领域适应性调整方面非常昂贵。 为了解决上述问题,我们在本文中提出了一种新的方法,旨在开发一个更有效的中文 PLM,能够适应多个复杂数学任务,从而更好地支持数学相关应用。该方法利用现有 LLMs 隐含的大量知识来提高 PLMs 解决复杂问题的能力。在实验中,该方法在一组数学任务上表现出色,甚至优于基于 LLM 的方法。 2. 相关工作 2.1 预训练语言模型的数学推理能力 近年来,PLM 在数学推理方面取得了很大的进步。例如,BERT 在数学推理任务上取得了很好的性能,表明 PLM 能够在一定程度上理解数学公式和逻辑。CodeX 是另一个专门针对数学推理的 PLM,在数学问题求解任务上取得了最先进的性能。 2.2 … Read more

逐步思考,洞悉世界——语言模型推理的奥秘

大家好,我是资深人工智能专家Halo Master。今天,我将带大家一起探索语言模型推理的奇妙世界。我们将从一篇arxiv论文《Why think step by step? Reasoning emerges from the locality of experience》开始,逐步解析语言模型中推理的本质。 语言模型的推理能力 语言模型,作为人工智能领域冉冉升起的新星,在文本生成、语言翻译、问答系统等领域展现了强大的能力。然而,当我们要求语言模型进行复杂的推理任务时,比如数学问题求解、故事理解等,它们往往会遇到困难。 推理的本质:局部结构与链式推理 那么,为什么推理对语言模型如此重要呢?推理的本质是什么? 在本文中,作者提出了一个假设:推理之所以有用,是因为训练数据具有局部结构。 语言模型的训练数据通常是自然语言文本,而自然语言文本通常是关于几个密切相关的主题的。当概念在经验或训练数据中经常共现时,直接用简单的统计估计量来估计它们之间的影响是很容易的。然而,当我们需要推断一个信息对另一个信息的影响,但却没有将它们一起遇到时,我们就必须进行一系列的推理,在概念对之间跳跃,将我们所知道的与我们想要推断的联系起来。 作者认为,当训练数据具有局部结构时,链式推理就变得非常有用。局部结构是指观察往往发生在相关的概念的局部重叠邻域中。 理论分析:推理如何降低偏差 为了证明这一假设,作者给出了一个理论分析。他们考虑了一个简化的任务,在这个任务中,语言模型在一个链式结构的贝叶斯网络上训练。他们证明,当训练数据具有局部结构时,通过中间变量进行推理可以降低偏差。 实证研究:局部结构与推理的有效性 为了验证这一假设,作者进行了一个实证研究。他们训练了一个语言模型,并在具有不同结构的合成数据上对其进行评估。结果表明,当训练数据具有局部结构时,生成中间变量可以帮助语言模型更准确地估计条件概率。 结论:推理是语言模型的必备能力 综上所述,推理是语言模型的一项必备能力。当训练数据具有局部结构时,推理可以通过减少偏差来提高语言模型的性能。 展望:未来研究方向 在未来的研究中,我们可以从以下几个方面继续探索语言模型的推理能力: 我相信,随着人工智能技术的不断发展,语言模型的推理能力也将越来越强大,并将在越来越多的领域发挥重要作用。 参考文献 [1] Ben Prystawski, Michael Y. Li, Noah D. Goodman. Why think step by step? Reasoning emerges from the locality of experience. arXiv preprint arXiv:2304.03843, 2023.[2] … Read more

AutoGen:支持下一代大型语言模型应用程序

🎯 AutoGen的目标 随着GPT-3、GPT-4等大型语言模型的出现,它们在诸多领域都展现了强大的潜力。但是要充分发挥这些模型的能力,需要设计非常复杂的工作流程,对研发人员提出了巨大挑战😥。 AutoGen框架的目标就是要简化大型语言模型工作流程的编排、优化和自动化。让研发人员可以更容易地构建复杂的语言模型应用💪。 🛠 AutoGen的方法 AutoGen提供了可自定义和可交谈的agent。研发人员只需要进行以下两步配置: 整个流程就可以自动化啦!非常简单易用~ 🤖 Agent的特点 AutoGen的Agent有以下特点: 👥 Agent模式的好处 Agent对话中心的设计模式有诸多好处: 🎉 总结 AutoGen为构建下一代语言模型应用提供了一个高效、简单、可扩展的框架。它展示了语言模型、人类和工具协作的巨大创新空间。希望大家在未来的科研中可以活跃运用AutoGen,创造出更多惊喜😄请大家多多提问,让我们共同进步!

平衡低成本目标编辑和灾难性遗忘

大家好,今天,我们要一起探讨的是 Microsoft Research 最近的一篇研究:大型语言模型的终身模型编辑。这篇文章讲述了如何在保持低成本的同时,进行有效的模型修正,避免模型出现灾难性的遗忘。让我们一起深入了解一下。🧐 🎯 问题的根源 首先,我们来看看为什么需要对大型语言模型(LLMs)进行修正。LLMs在许多复杂任务中有着广泛的应用,但它们有时会出现不可预测的错误,或者传播偏见语言。这些错误往往随着底层数据或用户行为的变化而产生。这就需要对这些模型和它们支持的实际应用进行有针对性的、成本有效的修复。 我们可能会想到使用重复预训练或微调来实现这些修复。然而,这些解决方案通常在计算上过于昂贵。例如,LLAMA 1的训练需要在2048个A100 GPU上进行21天,其成本超过240万美元。LLMs的微调需要比许多研究实验室能够持续并负担得起的GPU更大。此外,我们甚至还不清楚应该向数据语料库添加或删除哪些数据,以便在不影响无关输入的情况下纠正特定行为。 📝 模型编辑的提出 为了在不进行昂贵训练的情况下保持LLMs的更新,人们最近提出了模型编辑作为对大模型进行有针对性更新的范例。大多数模型编辑器一次更新一个模型,注入一批修正。但错误通常会随时间序列性地被发现,并且必须快速纠正。换句话说,当模型被部署时,必须进行终身模型编辑,即遇到一个流的错误并必须立即对其进行处理。这需要进行许多连续的编辑,在这种设置下,现有的编辑器已知会失败。成功在这里意味着按序纠正所有的编辑,而不遗忘旧的修复,也不会降低对无关输入的性能。 那么,什么是编辑呢?在一篇题为《带有离散键值适配器的GRACE终身模型编辑》的文章中,作者考虑了三种类型的编辑: 🧪 终身模型编辑的挑战与解决方案 我们已经知道,错误往往会随时间序列性地被发现,并且必须快速纠正。这就需要进行许多连续的编辑,这是一项挑战。在这种情况下,现有的编辑器已知会失败。它们可能会遗忘旧的修复,或者对无关输入的性能产生影响。 为了解决这个问题,研究者们提出了一种名为GRACE的新型模型编辑方法。这个方法采用了离散的键值适配器,能够处理连续的编辑。它能够在不遗忘旧的修复,也不会降低对无关输入的性能的情况下,按序纠正所有的编辑。 这种方法的关键在于,它不直接更改模型的参数,而是在模型上添加一个小型的键值存储。每次编辑时,该方法都会将编辑的“键”和“值”添加到存储中。然后,在模型进行预测时,该方法会检查存储中是否存在与当前输入匹配的键。如果存在,模型就会使用存储中的值来修改其预测。 这种方法的优势是,它能够在处理新的编辑时,保留对旧编辑的记忆,从而避免了灾难性的遗忘。此外,由于键值存储的规模远小于模型本身,因此,这种方法的计算和存储成本也相对较低。 总结一下,大型语言模型的终身模型编辑是一个非常重要且具有挑战性的问题。这在保持模型更新,提高预测准确性,同时也降低了训练和维护的成本。通过微调、模型编辑等方法,我们可以使模型更加适应变化的世界,并为我们提供更准确、更贴近现实的预测。希望你们能从这次的讲解中有所收获,下次课我们再见!👋🏻

大语言模型的加速之道:思维骨架(Skeleton-of-Thought)

大家好,欢迎收听我们的人工智能播客,我是你的主播,也是资深的人工智能专家。今天我们要聊的话题是:如何通过一种全新的方式——思维骨架(Skeleton-of-Thought,简称SoT),来加速大语言模型(LLM)的输出,并提高其结果质量。🚀 💡大语言模型的痛点 LLM,例如LLaMA和OpenAI的GPT-4,正在改变我们的技术领域。然而,对LLM的一个普遍抱怨是它们的运行速度。在许多情况下,从LLM获取答案需要很长时间,这限制了LLM在诸如聊天机器人、协同助手和工业控制器等延迟关键功能中的应用。⏱️ 🚀思维骨架的提出 为了解决这一问题,微软研究院和清华大学的研究者提出了一种新的加速LLM生成的方法——思维骨架(SoT)。不同于大多数先前需要对LLM模型、系统或硬件进行修改的方法,SoT将LLM视为黑箱,因此可以应用于任何现成的开源(如LLaMA)或API基础(如OpenAI的GPT-4)模型中。🎁 🚗SoT如何加速? SoT的想法源于LLM和人类处理信息的方式的区别。LLM按顺序生成答案,而人类在很多情况下,会先提炼出答案的骨架,然后添加细节来解释每一点。SoT就是按照这种人类的思维方式,将生成过程分为两个阶段:首先,SoT让LLM生成答案的骨架,然后再让LLM给出骨架中每一点的答案。🔍 这种方法提供了一个新的加速机会,因为第二阶段的每一点的答案都可以并行生成,无论是本地模型(如LLaMA)还是API基础模型(如OpenAI的GPT-4)。对于API基础模型,我们可以对每一点发出并行的API请求。对于本地运行的模型,我们可以在一个批次中同时回答所有的点。💼 ⚖️SoT的效果如何? 我们在包括九个开源模型和三个API基础模型在内的12个最近发布的模型上测试了SoT。我们使用的是Vicuna-80数据集,该数据集包含80个问题,涵盖了编程、数学、写作、角色扮演等九个类别。 结果显示,SoT在所有模型上都提供了显著的速度提升。特别是,SoT在12个模型中的8个模型上获得了超过2倍(最高达到2.39倍)的速度提升。此外,SoT在不明显降低答案质量的情况下实现了这种速度的提升。💪 🌈SoT的未来 SoT通过独立并行地扩展点,因此并不适合需要逐步推理的问题,比如数学和编程。为此,我们提出了一种SoT的扩展,叫做SoT with Router(SoT-R),它可以在适合的时候自适应地触发SoT。我们提出了一个路由器模型,该模型可以基于问题和答案的骨架,预测何时应使用SoT。实验显示,SoT-R在数学和编程问题上的性能超过了原始的SoT,并在所有测试集上达到了最好的性能。🎯 对于未来,我们期待通过进一步的研究和开发,将SoT的应用范围扩大到处理更复杂的问题,同时继续提高其生成速度和答案质量。我们相信,随着技术的不断发展,大语言模型将在我们的日常生活中扮演越来越重要的角色,为我们提供更加智能、快速和准确的服务。✨ 在此,我要提醒大家,SoT的代码和演示已经在Github上开源,欢迎感兴趣的朋友们去查阅和使用。🌐 以上就是今天播客的全部内容,希望大家对SoT有了更深入的理解。如果你有任何问题或者想法,欢迎在评论区留言。我们下期再见,祝大家每天都有新的收获!👋

Orca 2:推理技巧赋能小型语言模型,性能超越5-10倍大模型

大家好,今天,我将为大家介绍一篇关于Orca 2的文章。Orca 2是一种小型语言模型,它通过学习一系列推理技巧,在推理能力上超越了5-10倍的大模型。 背景 大型语言模型(LLMs)正在改变人与机器之间的交互方式,并提升了许多现有应用的用户体验,如编码、网络搜索、聊天机器人、客户服务和内容创作等。这种由LLMs带来的转变也为新型人工智能应用铺平了道路。随着LLMs规模的不断扩大,例如GPT-4和PaLM-2等,它们展现出了前所未有的能力,尤其是在零-shot推理方面,包括回答复杂问题、生成解释和解决多步问题。即使在专业领域,LLMs现在也能在美国医学执照考试等测试中取得合格分数。这些能力曾经被认为是人工智能无法达到的范畴。 问题 然而,现有对于小型语言模型的训练往往依赖于模仿学习,即复制更大、更强大的模型的输出。尽管这些模型可以生成与其“老师”风格相似的内容,但它们在推理和理解能力上往往表现不足。模仿学习可能会限制较小模型的潜力,限制它们根据问题和模型容量来利用最佳解决策略。 主要贡献及解决思路 Orca 2的目标有两个: 一是教导较小模型如何使用一系列推理技巧,例如逐步处理、回忆再生成、回忆-推理-生成、抽取-生成和直接回答方法;二是帮助这些模型确定何时使用最有效的推理策略,让它们能够在任务中表现最佳,不受模型大小的限制。 与Orca 1不同,Orca 2精心设计推理策略以适应特定任务,考虑到学生模型是否具备相同的行为。更强大的LLM被设计为呈现引发特定战略行为的复杂提示,从而产生更精确的结果。在训练阶段,较小模型仅暴露于任务和结果行为,而不知道触发这种行为的原始提示,这种“提示擦除”技术使Orca 2成为一种“谨慎的推理者”。 达到的具体效果 与以往侧重于小型模型评估的研究不同,作者们提供了包含约100个任务和超过36,000个独特提示的15个综合性基准测试来评估Orca 2。初步结果显示(figure 1),Orca 2明显超越了相似规模的模型,甚至在需要推理的任务上与5到10倍大的模型相匹敌甚至超越,突显了赋予较小模型更好推理能力的潜力。 文章推荐 文章名称:Orca 2-Teaching Small Language Models How to Reason 文章链接:https://arxiv.org/pdf/2311.11045.pdf github链接: 结语 以上就是我对Orca 2这篇文章的解读。希望对大家有所帮助。