Category: AGI

Embroid: 无标签纠正和改进语言模型预测Embroid: 无标签纠正和改进语言模型预测

在最近的研究中,一项名为”Embroid”的新技术引起了广泛关注。这项技术可以在没有标签的情况下,对大型语言模型(LLM)的预测进行纠正和改进。通过使用这种技术,我们可以提高LLM在各种自然语言处理任务中的性能,而无需依赖于标注数据。本文将逐步思考并详细解析Embroid技术的原理和应用。 Embroid技术的原理 Embroid技术的核心思想是利用嵌入空间的平滑性质来改进LLM的预测。嵌入空间是指模型如BERT中的向量表示空间,其中相似的样本在空间中的距离较近。Embroid利用这种平滑性质,通过比较LLM预测与其邻居预测的差异,来识别预测不一致的情况。然后,通过调整这些预测,使其与邻居的预测一致,从而提高整体的预测准确性。 Embroid技术的应用 Embroid技术在各种任务中都能够改进LLM的预测性能。例如,在GPT-JT模型上,Embroid技术在89.1%的情况下改进了预测结果,平均提升了7.3个F1分数。类似的改进效果也在GPT-3.5等API访问模型中观察到。 此外,Embroid技术可以与不同的提示策略相结合,如AMA、chain-of-thought和demonstration-selection engineering,进一步提高性能。同时,通过选择适当的嵌入模型,Embroid技术可以定制到特定领域,例如使用HuggingFace上提供的法律嵌入模型,可以改进通用领域LLM的性能。 总结 Embroid技术是一种无标签纠正和改进LLM预测的新方法。通过利用嵌入空间的平滑性质,Embroid技术能够识别并纠正LLM预测中的不一致之处,从而提高预测的准确性。该技术在各种任务中都表现出良好的性能,并且可以与不同的提示策略和嵌入模型相结合,进一步提升性能。Embroid技术的出现为无标签数据的利用提供了新的可能性,为语言模型的发展带来了新的机遇。 [...]

Embroid: 无标签纠正和改进LLM预测Embroid: 无标签纠正和改进LLM预测

近年来,人工智能领域取得了巨大的进展,其中包括了语言模型的发展。语言模型是一种能够理解和生成自然语言的模型,如BERT和GPT。然而,这些模型在进行预测时通常需要大量的标记数据来训练,这对于一些特定任务来说可能是一项耗时且昂贵的工作。 幸运的是,研究人员提出了一种名为Embroid的方法,可以在没有标签数据的情况下改进和纠正语言模型的预测性能。Embroid利用了语言模型的嵌入空间的平滑性质,即在嵌入空间中相似的样本通常具有相同的标签。这意味着,如果一个样本的预测与其在嵌入空间中的最近邻的预测不一致,那么它很可能是错误的。 那么,Embroid是如何工作的呢?首先,它使用语言模型作为分类器,通过提示来进行预测。这样,领域专家只需要花费时间编写提示,而不需要手动标记大量的数据。然而,设计有效的提示并不容易,微小的更改可能会对预测结果产生显著影响。 接下来,Embroid利用嵌入空间的平滑性来检查语言模型的预测是否正确。如果一个样本的预测与其最近邻的预测不一致,那么它很可能是错误的。通过调整这些预测,使其与邻居的预测相匹配,Embroid可以提高整体的预测准确性。 为了避免过度依赖单个嵌入空间,Embroid还进行了多个嵌入空间的比较。这样可以在不同模型的嵌入空间中找到更准确的预测结果。通过使用弱监督的方法,将多个嵌入空间的预测结果结合起来,Embroid生成了最终的纠正预测,而无需标记数据。 研究人员进行了一系列实验证明,Embroid在各种任务上都能够改善原始提示的预测结果。无论是在GPT-JT还是GPT-3.5上,Embroid都能够显著提高预测的准确性。这项研究的结果为我们提供了一种无需标签数据就能改进和纠正语言模型预测的方法,为未来的研究和应用提供了新的思路。 总之,Embroid是一种创新的方法,通过利用嵌入空间的平滑性来改进和纠正语言模型的预测性能。它不仅减少了手动标记数据的工作量,还提高了预测的准确性。这项研究的成果对于推动自然语言处理领域的发展具有重要意义,为我们在实际应用中更好地利用语言模型提供了新的可能性。 [...]

Embroid:无需标签纠正和改进LLM预测Embroid:无需标签纠正和改进LLM预测

导语:在人工智能领域,研究人员一直在探索如何提高预测模型的准确性。最近,斯坦福大学、Anthropic和威斯康星大学麦迪逊分校的研究人员开发了一种名为Embroid的方法,可以在不使用标签的情况下纠正和改进LLM(语言模型)的预测。本文将详细解析Embroid方法的原理和应用。 总结:Embroid方法是一种无需标签纠正和改进LLM预测的方法。通过计算不同嵌入函数下的数据集表示,并利用LLM的预测一致性来识别错误预测,Embroid方法可以提高人工智能系统在各种任务中的预测准确性。这一方法的出现对于解决标注数据集困难的问题具有重要意义,并为人工智能技术的发展带来更多的可能性。 参考文献:[1] AI前沿速报0817:OpenAI首次公开收购 – 知乎[1] 研究人员开发出一种AI方法,可以自动纠正预测错误 – 知乎 Learn more: [...]

FlashFFTConv:使用张量核心进行长序列高效卷积FlashFFTConv:使用张量核心进行长序列高效卷积

导语:本文将详细解析FlashFFTConv,一种使用张量核心进行长序列高效卷积的算法。我们将介绍FlashFFTConv的原理、优势以及应用领域。 1. 引言 卷积模型在处理长序列任务时展现出了出色的推理能力,例如长文本建模、音频分析和DNA建模等。然而,与经过优化的Transformer相比,卷积模型在计算时间上仍存在瓶颈。其中一个主要瓶颈是快速傅里叶变换(FFT)算法,该算法可以在O(NlogN)的时间复杂度内计算长卷积,但硬件利用率较低。为了解决这个问题,我们提出了FlashFFTConv算法,一种在GPU上高效计算FFT卷积的新算法[2]。 2. FlashFFTConv算法原理 FlashFFTConv算法通过Monarch分解将FFT卷积的步骤融合在一起,并利用现代GPU上的张量核心进行计算。该算法的主要思想是将FFT分解为矩阵乘法操作,并在长序列情况下实现步骤的融合。具体而言,FlashFFTConv算法通过以下两个方面解决了FFT卷积的瓶颈[2]: 3. FlashFFTConv的优势 FlashFFTConv算法相较于传统的FFT算法具有以下优势[2]: 4. FlashFFTConv的应用领域 FlashFFTConv算法在以下领域具有广泛的应用前景[2]: 5. 结论 FlashFFTConv是一种高效的卷积算法,通过利用张量核心和Monarch分解,可以加速长序列的卷积计算。该算法在长序列任务中具有广泛的应用前景,并在性能上超越了传统的FFT算法和优化的Transformer。我们期待看到FlashFFTConv在各个领域的进一步应用和发展。 参考文献 Learn more: [...]

简单长卷积用于序列建模的详细解析简单长卷积用于序列建模的详细解析

在序列建模中,我们一直在研究如何获得良好的性能,并开发了新的系统技术和深度学习架构。今天,我们将介绍一个简单的基准线方法,它可以取得出人意料的好效果:只需使用与输入序列相同大小的长卷积!事实证明,我们只需要简单的正则化,卷积就可以与复杂的序列模型(如S4)在Long Range Arena和文本建模等基准测试中相媲美。[1] 长卷积的正则化:我们首先提出了一个问题:如果将SSMs(State Space Models)替换为长卷积,会发生什么?代码非常简单,我们可以使用FFT卷积以O(NlogN)的时间复杂度计算长卷积(而不是PyTorch的Conv1D中的O(N^2))。然而,如果在Long Range Arena等基准测试上尝试这种方法,你会发现性能落后于SSMs。[1] 为什么会这样呢?如果你可视化学习到的卷积核,你会发现一个潜在的答案:长卷积核非常不平滑和嘈杂!为了解决这个问题,我们发现只需应用一个简单的正则化操作——Squash操作——到卷积核权重上即可。这个操作非常简单,只需要一个超参数λ。如果在训练过程中应用这个操作,你会得到在时间域上更稀疏、在频率域上更平滑的卷积核。在Long Range Arena基准测试上,这个小改变就足以与SSMs的性能相匹配。[1] 长卷积的应用:我们进一步评估了长卷积在图像分类、文本建模和脑fMRI分析等领域的性能,并发现长卷积在所有这些领域都表现出色。特别是在文本建模中,我们将H3层中的SSMs替换为卷积,发现这个新的H3-Conv模型在PILE数据集上的性能与H3相当,并且优于Transformers。[1] 未来展望:我们的论文中还包括更多关于长卷积在其他领域的评估,例如图像分类和脑fMRI分析等有趣的应用。我们还开发了一些新的系统优化方法,以提高长卷积的运行时性能。此外,我们还发现了长卷积与Monarch矩阵理论之间的有趣联系,这使得我们可以在卷积中插入额外的参数,从而获得更好的质量。[1] 结论:简单的长卷积在序列建模中表现出色,并且只需添加简单的正则化操作就可以与复杂的序列模型相媲美。这种方法在多个领域都取得了良好的结果,并且具有较高的运行时性能。我们对这些方向非常感兴趣,并且希望能够在开放的环境中进一步发展这些方法。[1] Learn more: [...]

RWKV-5详细解析:理解并行训练的RNN网络RWKV-5详细解析:理解并行训练的RNN网络

RWKV-5是一种可以并行训练的RNN网络,相较于基于Transformer的模型,它具有更低的自回归解码复杂度。本文将从多个角度详细解析RWKV-5模型,帮助读者更好地理解该模型的原理和应用 一、RWKV-5模型的背景和意义1.1 Transformer模型的挑战 [1] 1.2 RWKV-5模型的优势 [1] 二、RWKV-5模型的核心思想2.1 注意力机制和循环神经网络的核心思想 [1] 2.2 RWKV-5模型中的AFT注意力机制 [1] 三、RWKV-5模型的架构和设计3.1 RWKV-5的整体架构 [1] 3.2 RWKV-5的位置编码设计 [1] 四、RWKV-5模型的应用领域 结语:通过对RWKV-5模型的详细解析,我们了解到它是一种可以并行训练的RNN网络,相较于基于Transformer的模型具有更低的自回归解码复杂度。RWKV-5模型的核心思想是将循环神经网络和AFT注意力机制相结合,通过张量积建模相互作用,提高了模型的表达能力。该模型在大语言模型的自回归解码推理中具有广泛的应用前景。 参考文献:[1] 小白视角解读RWKV论文模型 – 知乎[2] RWKV的RNN CNN二象性 – 知乎 Learn [...]

探索Zephyr-7B-β:一款掀起LLM新浪潮的强大语言模型探索Zephyr-7B-β:一款掀起LLM新浪潮的强大语言模型

大家好,今天我要向你们介绍一个在人工智能领域中备受瞩目的明星——Zephyr-7B-β,这是一款性能高超的大型语言模型(LLM)。它的出现不仅改变了我们对AI的认知,更为我们的日常生活带来了无尽的可能。 Zephyr-7B-β是Zephyr系列的第二个模型,是基于Mistralai/Mistral-7B-v0.1并使用直接偏好优化(DPO)在公开可用的合成数据集上进行训练的微调版本。这款模型在发布时,在MT-Bench和AlpacaEval基准上的表现已经超越了许多其他同类产品,堪称7B类的聊天模型中的佼佼者。 Zephyr-7B-β:小巧却强大 虽然Zephyr-7B-β在模型大小上只有7B参数类似GPT的模型,但它在公开可用的合成数据集上进行微调后的性能却令人惊叹。特别是在MT-Bench的多个类别上,与Llama2-Chat-70B等较大的开放模型相比,Zephyr-7B-β具有较强的性能。 然而,无论任何事物都不可能完美,对于更复杂的任务,如编码和数学等,Zephyr-7B-β的表现仍有待提升。它在这些方面的表现暂时无法与更专业的模型相比,但我们相信,随着研究的深入,这种差距会逐步缩小。 Zephyr-7B-β:更多的可能性 Zephyr-7B-β最初是在经过过滤和预处理的UltraChat数据集上进行微调的,这个数据集包含了由ChatGPT生成的各种合成对话。随后,我们在openbmb/UltraFeedback数据集上进一步将模型与TRL的DPOTrainer对齐。这个数据集包含了按GPT-4排名的64k个提示和模型完成情况。 这就意味着,Zephyr-7B-β可以用于聊天,你可以查看我们的演示来测试其功能。同时,这款模型的代码已经在GitHub上开放,对于有兴趣的同学,可以自行下载研究。 Zephyr-7B-β:未来的挑战 然而,我们也需要看到,尽管Zephyr-7B-β的表现在许多方面都非常出色,但它也存在一些问题。例如,它尚未通过RLHF等技术与人类偏好保持一致,也未通过ChatGPT等响应的循环过滤进行部署,因此该模型可能会产生有问题的输出,特别是在提示时。 此外,尽管我们知道用于训练Zephyr-7B-β的数据集主要包含了由ChatGPT生成的各种合成对话,但我们仍然不清楚用于训练基本模型(mistralai/Mistral-7B-v0.1)的语料库的大小和组成。这些问题都是我们在未来需要解决的挑战。 Zephyr-7B-β的出现,无疑为我们展示了大型语言模型的强大潜力。通过不断的研究和改进,我们有理由相信,未来的Zephyr系列将会带给我们更多的惊喜~ [...]

一次神奇的AI旅程:Zephyr-7B模型与Lora训练一次神奇的AI旅程:Zephyr-7B模型与Lora训练

大家好,今天我要给大家分享的是关于神奇的Zephyr-7B模型和Lora训练的故事。这是一次跨越三大洲的合作,让我们一起探索这个令人兴奋的AI世界。 Zephyr:直接蒸馏语言模型对齐 在 AI 的世界中,出现了一款名为 Zephyr-7B 的模型,它的出现可谓是一次划时代的突破。那么,Zephyr-7B 是如何诞生的呢? 几个月之前,一个位于巴黎的团队发布了他们的第一个模型:Mistral 7B。这个模型虽然体积小巧,但性能强大,在基准测试中超过了所有同类模型,更令人振奋的是,这是一个开源项目。 然后,Hugging Face H4团队的两名成员在一次小聚中,讨论了使用斯坦福大学新发表的 DPO 方法对 Mistral 7B 这个模型进行微调的可能性。他们在 HF hub 上找到了一些公开的数据集,包括由面壁智能和清华大学 NLP 共同支持的 OpenBMB 开源的两个大规模、高质量的微调数据集:UltraFeedback 和 UltraChat。 UltraFeedback 是一个大规模、多样化、细粒度 的偏好数据集。UltraChat [...]

弥合神经辐射场之间的差距 采用渐进式体积蒸馏的架构弥合神经辐射场之间的差距 采用渐进式体积蒸馏的架构

神经辐射场 (NeRF) 方法已被证明是 3D 场景的紧凑、高质量和多功能表示,并支持编辑、检索、导航等下游任务。各种神经架构都在争夺NeRF的核心结构,包括普通的多层感知器(MLP)、稀疏张量、低秩张量、哈希表及其组成。这些表示形式中的每一种都有其特定的权衡。例如,基于哈希表的表示允许更快的训练和渲染,但它们缺乏明确的几何含义,阻碍了下游任务,如空间关系感知编辑。在本文中,我们提出了渐进式体积蒸馏(PVD),这是一种系统的蒸馏方法,允许不同架构之间的任意转换,包括MLP、稀疏或低秩张量、哈希表及其组成。因此,PVD 使下游应用程序能够以事后方式对手头的任务进行最佳调整神经表示。转换速度很快,因为蒸馏是在不同级别的体积表示上逐步进行的,从浅到深。我们还采用了特殊的密度处理来处理其特定的数值不稳定问题。在NeRF-Synthetic、LLFF和TanksAndTemples数据集上验证了我们的方法。例如,使用 PVD,可以从基于哈希表的 Instant-NGP 模型中提炼出基于 MLP 的 NeRF 模型,其速度比从头开始训练原始 NeRF 快 10 倍~20 倍,同时实现卓越的合成质量水平。代码可在 https://github.com/megvii-research/AAAI2023-PVD 上获得。 Key Points Related Work Method Result Conclusion [...]

在少样本学习中双曲与欧几里得嵌入在少样本学习中双曲与欧几里得嵌入

最近在表示学习领域的研究表明,层次数据在双曲空间中可以得到低维且高度信息丰富的表示。 然而,尽管在图像识别中双曲嵌入已经引起了人们的关注,但它们的优化仍然容易受到数值障碍的影响。 此外,与传统欧氏特征相比,尚不清楚哪些应用最有可能从双曲性所施加的隐式偏差中受益。 在本文中,我们关注原型双曲神经网络。 特别地,高维空间中双曲嵌入趋向于收敛到Poincaré球体的边界,以及这对少样本分类的影响。 我们发现,在公共双曲半径下的双曲嵌入可以获得最佳少样本结果。 与之前的基准结果相比,我们证明了使用欧氏度量的固定半径编码器可以实现更好的性能,而不管嵌入维数如何。 [...]