Triton:重新定义深度学习原语的编程语言和编译器 🌊💻Triton:重新定义深度学习原语的编程语言和编译器 🌊💻

大家好,欢迎来到我们的AI播客。我是你的主持人,一位资深的AI专家。今天,我们将聚焦于一个名为Triton的开源项目,它正在重新定义我们编写高效深度学习原语的方式。🚀 Triton的魅力 🌟 Triton是OpenAI的开发项目,是一种用于编写极其高效的自定义深度学习原语的语言和编译器。📚 这个项目的宗旨在于提供一个开源环境,让开发者可以以比CUDA更高的效率编写快速代码,同时比其他现有的DSL(领域特定语言)具有更高的灵活性。🔗 基于这个项目的基础理论已经在MAPL2019的出版物”Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations”中描述,如果你使用Triton,一定要引用这篇文章。📝 快速安装 Triton 🚀 Triton的安装非常直接。你只需要使用PIP(Python的包管理器),通过下面的命令就可以安装最新的稳定版本: 如果你想要安装最新的每夜版本,可以使用以下命令: 从源码安装 Triton 🧩 当然,你也可以选择从源代码安装Triton。首先,你需要复制代码库,然后在其根目录下安装相关的依赖项,最后安装Triton的Python包。以下是详细的步骤: Triton和自定义LLVM 🔧 值得一提的是,Triton使用LLVM(一种用于开发编译器的库)来为GPU和CPU生成代码。通常情况下,Triton会下载一个预构建的LLVM,但你也可以自己从源代码构建LLVM。 然而,需要注意的是,LLVM并没有稳定的API,因此在任意的LLVM版本上,Triton的构建都可能无法正常工作。 关于Triton更深入的内容,我想邀请你们访问其Github页面自行探索。在这个存储库中,你可以找到详细的文档,以及一些关于如何使用Triton的教程。📖 [...]

Triton语言和编译器Triton语言和编译器

大家好,欢迎收听本期播客。今天要和大家分享的是关于OpenAI开发的Triton语言和编译器的开源项目。如果你对人工智能和编程领域感兴趣,那么这个项目一定会引起你的关注。 首先,让我向大家介绍一下Triton。Triton是一个用于编写高效自定义深度学习原语的语言和编译器。它的目标是提供一个开源环境,让我们能够以比CUDA更高的生产力编写快速的代码,同时又比其他现有的领域特定语言(DSL)更具灵活性。 Triton的基础是在MAPL2019的一篇论文中描述的。这篇论文名为《Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations》。如果你使用了Triton,不妨考虑引用这篇论文,以表达对该项目的支持。 接下来,我将为大家介绍如何安装和使用Triton。你可以通过pip来安装最新稳定版本的Triton: Triton的二进制包适用于CPython 3.7-3.11和PyPy 3.8-3.9。 如果你想获取最新的Nightly版本,可以使用以下命令进行安装: 当然,你也可以从源代码构建和安装Triton。首先,你需要将Triton的代码仓库克隆到本地: 然后进入项目目录,并执行以下命令进行安装: 如果你想使用虚拟环境,可以执行以下命令: 需要注意的是,Triton使用LLVM来生成针对GPU和CPU的代码。通常情况下,Triton会下载预构建的LLVM,但你也可以自行构建并使用自定义的LLVM。请注意,LLVM没有稳定的API,因此Triton的构建只能在特定版本的LLVM上工作。 最后,我还要提醒大家,OpenAI目前正在招聘Triton项目的编译器工程师和内核工程师。如果你对这个领域感兴趣,不妨考虑加入我们的团队。 以上就是对OpenAI Triton项目的介绍和安装说明。希望通过这个播客,能够让大家对Triton有一个初步的了解,并且鼓励大家参与到这个项目中来。谢谢大家的收听,我们下期再见!🤖🎙️ [...]

闪电注意力的魅力:加速计算、节省显存、IO感知的精准注意力闪电注意力的魅力:加速计算、节省显存、IO感知的精准注意力

大家好,欢迎收听本期播客。今天,我们将讨论一个非常有趣且重要的深度学习模型——闪电注意力(Flash Attention)。闪电注意力是一种新的注意力机制,它可以显著地提高Transformer模型的计算效率和显存利用率。 什么是注意力机制? 在介绍闪电注意力之前,我们先来简单回顾一下什么是注意力机制。注意力机制是一种神经网络模型,它可以帮助模型专注于输入序列中最重要的部分。在Transformer模型中,注意力机制被用来计算查询序列(Query)和键序列(Key)之间的相关性,然后将相关性作为权重,对值序列(Value)进行加权求和,得到输出序列。 为什么需要闪电注意力? 标准的注意力机制虽然功能强大,但它在计算和存储方面都非常昂贵。这是因为,标准注意力机制需要计算查询序列和键序列之间所有的相关性,这对于长序列来说是一个非常耗时的过程。此外,标准注意力机制还需要存储所有的相关性矩阵,这对于大规模模型来说是一个非常大的存储开销。 闪电注意力是如何解决这些问题的? 闪电注意力通过将注意力机制分解成多个小块来解决这些问题。每个小块只计算查询序列和键序列中的一小部分的相关性,然后将这些小块的结果组合起来得到最终的注意力矩阵。这种方法大大降低了计算和存储的开销。 闪电注意力的优势 闪电注意力具有以下几个优势: 闪电注意力的应用 闪电注意力可以广泛应用于各种自然语言处理任务,例如机器翻译、文本摘要、问答系统等。它还可以应用于计算机视觉任务,例如图像分类、目标检测、图像分割等。 总结 闪电注意力是一种新的注意力机制,它可以显著地提高Transformer模型的计算效率和显存利用率。闪电注意力具有计算效率高、显存利用率高、精度高等优点,可以广泛应用于各种自然语言处理和计算机视觉任务。 如果你对闪电注意力感兴趣,可以进一步阅读以下资料: [...]

惊艳亮相!coqui-ai/TTS——所向披靡的深度学习文本转语音工具包惊艳亮相!coqui-ai/TTS——所向披靡的深度学习文本转语音工具包

大家好!今天,我要隆重介绍一个令人惊叹的项目——coqui-ai/TTS,一个功能强大的深度学习文本转语音工具包。它在研究和生产领域久经考验,能够将冰冷的文字转换成富有情感和个性的语音。coqui-ai/TTS 由才华横溢的 coqui.ai 团队开发,旨在为语音合成提供一站式解决方案。 🌈 一览众山小:TTS 的强大功能 coqui-ai/TTS 拥有令人难以置信的多功能性,它能够: ⚡️ 一学就会:coqui-ai/TTS 的简单上手指南 coqui-ai/TTS 的使用非常简单,即使你不是技术专家,也能快速上手。以下是如何使用 TTS 的步骤: 🛠️ 庖丁解牛:coqui-ai/TTS 的技术解析 coqui-ai/TTS 的背后是强大的深度学习技术。它使用了一种叫做 Tacotron 2 的神经网络模型,该模型能够将文本转换成语音频谱。然后,TTS 使用另一个叫做 WaveNet 的神经网络模型将语音频谱转换成实际的语音。 TTS 还包含了许多其他组件,如说话人编码器、声码器和语音转换模型。这些组件共同协作,确保 TTS [...]

用链式知识提示增强语言模型的推理能力用链式知识提示增强语言模型的推理能力

摘要: 最近,基于思想链(CoT)的提示在复杂推理任务中取得了成功,其目标是设计一个简单的提示,如“让我们逐步思考”或多个具有精心设计的理由的上下文示例,以引导大型语言模型(LLM)生成中间推理步骤。然而,生成的理由通常会伴随着错误,导致不真实和不诚实的推理链。为了减轻这种脆弱性,我们提出了一种新颖的基于知识的链式提示(CoK),目标是引导 LLM 生成形式为结构三元组的明确知识证据。这受到了我们人类行为的影响,即在回答复杂问题之前,我们可以在脑海中绘制思维导图或知识图作为推理证据。得益于 CoK,我们进一步引入了一种 F^2 验证方法,以估计推理链在事实性和忠实性方面的可靠性。对于不可靠的回答,可以指出错误的证据以引导 LLM 重新思考。大量实验证明,我们的方法可以进一步提高常识、事实、符号和算术推理任务的性能。 正文: 1. 介绍 2. 相关工作 3. 方法 4. 实验设置 5. 结论 [...]

JiuZhang 2.0:面向多任务数学问题求解的统一中文预训练语言模型JiuZhang 2.0:面向多任务数学问题求解的统一中文预训练语言模型

摘要: 尽管预训练语言模型 (PLM) 近期推动了数学推理研究的进展,但它们并非专门设计为有能力的多任务求解器,在实际应用中存在多任务部署成本高(例如,为一项任务复制一个模型)和复杂数学问题的性能较差的问题。为了解决这些问题,我们在本文中提出了 JiuZhang 2.0,这是一个专门针对多任务数学问题求解的统一中文 PLM。我们的想法是保持一个中等规模的模型,并采用“跨任务知识共享”来提高模型在多任务设置中的能力。特别地,我们构建了一个混合专家 (MoE) 架构来建模数学文本,以便捕获跨任务的通用数学知识。为了优化 MoE 架构,我们设计了多任务持续预训练和多任务微调策略,以进行多任务适配。这些训练策略能够有效地分解来自任务数据中的知识,并通过专家网络建立跨任务共享。为了进一步提高解决不同复杂任务的泛化能力,我们利用大型语言模型 (LLM) 作为互补模型,通过上下文学习,迭代地优化我们 PLM 生成的解决方案。大量的实验已经证明了我们模型的有效性。 关键词:预训练语言模型,数学推理,多任务学习,混合专家,持续预训练,微调,大型语言模型,上下文学习 正文: 1. 介绍 数学推理是人工智能的一个重要领域,具有广泛的应用,如自然语言处理、机器翻译、信息检索等。近年来,随着预训练语言模型 (PLM) 的发展,数学推理取得了显著的进展。PLM 在大规模数学语料库上进行预训练,能够在一定程度上理解数学公式和逻辑,在各种数学相关任务上取得更好的性能。 然而,基于 PLM 的方法仍然存在两个主要局限性:任务性能有限和维护成本高。一方面,由于 PLM 的容量有限,在复杂数学问题上,其性能往往不佳。另一方面,由于 PLM 需要为每个任务单独训练,这导致了维护成本高的问题。 [...]

逐步思考,洞悉世界——语言模型推理的奥秘逐步思考,洞悉世界——语言模型推理的奥秘

大家好,我是资深人工智能专家Halo Master。今天,我将带大家一起探索语言模型推理的奇妙世界。我们将从一篇arxiv论文《Why think step by step? Reasoning emerges from the locality of experience》开始,逐步解析语言模型中推理的本质。 语言模型的推理能力 语言模型,作为人工智能领域冉冉升起的新星,在文本生成、语言翻译、问答系统等领域展现了强大的能力。然而,当我们要求语言模型进行复杂的推理任务时,比如数学问题求解、故事理解等,它们往往会遇到困难。 推理的本质:局部结构与链式推理 那么,为什么推理对语言模型如此重要呢?推理的本质是什么? 在本文中,作者提出了一个假设:推理之所以有用,是因为训练数据具有局部结构。 语言模型的训练数据通常是自然语言文本,而自然语言文本通常是关于几个密切相关的主题的。当概念在经验或训练数据中经常共现时,直接用简单的统计估计量来估计它们之间的影响是很容易的。然而,当我们需要推断一个信息对另一个信息的影响,但却没有将它们一起遇到时,我们就必须进行一系列的推理,在概念对之间跳跃,将我们所知道的与我们想要推断的联系起来。 作者认为,当训练数据具有局部结构时,链式推理就变得非常有用。局部结构是指观察往往发生在相关的概念的局部重叠邻域中。 理论分析:推理如何降低偏差 为了证明这一假设,作者给出了一个理论分析。他们考虑了一个简化的任务,在这个任务中,语言模型在一个链式结构的贝叶斯网络上训练。他们证明,当训练数据具有局部结构时,通过中间变量进行推理可以降低偏差。 实证研究:局部结构与推理的有效性 为了验证这一假设,作者进行了一个实证研究。他们训练了一个语言模型,并在具有不同结构的合成数据上对其进行评估。结果表明,当训练数据具有局部结构时,生成中间变量可以帮助语言模型更准确地估计条件概率。 结论:推理是语言模型的必备能力 综上所述,推理是语言模型的一项必备能力。当训练数据具有局部结构时,推理可以通过减少偏差来提高语言模型的性能。 展望:未来研究方向 在未来的研究中,我们可以从以下几个方面继续探索语言模型的推理能力: 我相信,随着人工智能技术的不断发展,语言模型的推理能力也将越来越强大,并将在越来越多的领域发挥重要作用。 参考文献 [...]

AutoGen:支持下一代大型语言模型应用程序AutoGen:支持下一代大型语言模型应用程序

🎯 AutoGen的目标 随着GPT-3、GPT-4等大型语言模型的出现,它们在诸多领域都展现了强大的潜力。但是要充分发挥这些模型的能力,需要设计非常复杂的工作流程,对研发人员提出了巨大挑战😥。 AutoGen框架的目标就是要简化大型语言模型工作流程的编排、优化和自动化。让研发人员可以更容易地构建复杂的语言模型应用💪。 🛠 AutoGen的方法 AutoGen提供了可自定义和可交谈的agent。研发人员只需要进行以下两步配置: 整个流程就可以自动化啦!非常简单易用~ 🤖 Agent的特点 AutoGen的Agent有以下特点: 👥 Agent模式的好处 Agent对话中心的设计模式有诸多好处: 🎉 总结 AutoGen为构建下一代语言模型应用提供了一个高效、简单、可扩展的框架。它展示了语言模型、人类和工具协作的巨大创新空间。希望大家在未来的科研中可以活跃运用AutoGen,创造出更多惊喜😄请大家多多提问,让我们共同进步! [...]

平衡低成本目标编辑和灾难性遗忘平衡低成本目标编辑和灾难性遗忘

大家好,今天,我们要一起探讨的是 Microsoft Research 最近的一篇研究:大型语言模型的终身模型编辑。这篇文章讲述了如何在保持低成本的同时,进行有效的模型修正,避免模型出现灾难性的遗忘。让我们一起深入了解一下。🧐 🎯 问题的根源 首先,我们来看看为什么需要对大型语言模型(LLMs)进行修正。LLMs在许多复杂任务中有着广泛的应用,但它们有时会出现不可预测的错误,或者传播偏见语言。这些错误往往随着底层数据或用户行为的变化而产生。这就需要对这些模型和它们支持的实际应用进行有针对性的、成本有效的修复。 我们可能会想到使用重复预训练或微调来实现这些修复。然而,这些解决方案通常在计算上过于昂贵。例如,LLAMA 1的训练需要在2048个A100 GPU上进行21天,其成本超过240万美元。LLMs的微调需要比许多研究实验室能够持续并负担得起的GPU更大。此外,我们甚至还不清楚应该向数据语料库添加或删除哪些数据,以便在不影响无关输入的情况下纠正特定行为。 📝 模型编辑的提出 为了在不进行昂贵训练的情况下保持LLMs的更新,人们最近提出了模型编辑作为对大模型进行有针对性更新的范例。大多数模型编辑器一次更新一个模型,注入一批修正。但错误通常会随时间序列性地被发现,并且必须快速纠正。换句话说,当模型被部署时,必须进行终身模型编辑,即遇到一个流的错误并必须立即对其进行处理。这需要进行许多连续的编辑,在这种设置下,现有的编辑器已知会失败。成功在这里意味着按序纠正所有的编辑,而不遗忘旧的修复,也不会降低对无关输入的性能。 那么,什么是编辑呢?在一篇题为《带有离散键值适配器的GRACE终身模型编辑》的文章中,作者考虑了三种类型的编辑: 🧪 终身模型编辑的挑战与解决方案 我们已经知道,错误往往会随时间序列性地被发现,并且必须快速纠正。这就需要进行许多连续的编辑,这是一项挑战。在这种情况下,现有的编辑器已知会失败。它们可能会遗忘旧的修复,或者对无关输入的性能产生影响。 为了解决这个问题,研究者们提出了一种名为GRACE的新型模型编辑方法。这个方法采用了离散的键值适配器,能够处理连续的编辑。它能够在不遗忘旧的修复,也不会降低对无关输入的性能的情况下,按序纠正所有的编辑。 这种方法的关键在于,它不直接更改模型的参数,而是在模型上添加一个小型的键值存储。每次编辑时,该方法都会将编辑的“键”和“值”添加到存储中。然后,在模型进行预测时,该方法会检查存储中是否存在与当前输入匹配的键。如果存在,模型就会使用存储中的值来修改其预测。 这种方法的优势是,它能够在处理新的编辑时,保留对旧编辑的记忆,从而避免了灾难性的遗忘。此外,由于键值存储的规模远小于模型本身,因此,这种方法的计算和存储成本也相对较低。 总结一下,大型语言模型的终身模型编辑是一个非常重要且具有挑战性的问题。这在保持模型更新,提高预测准确性,同时也降低了训练和维护的成本。通过微调、模型编辑等方法,我们可以使模型更加适应变化的世界,并为我们提供更准确、更贴近现实的预测。希望你们能从这次的讲解中有所收获,下次课我们再见!👋🏻 [...]