LLM 大语言模型的输出是一段文本,如何计算误差?

对于输出文本的大型语言模型(如GPT系列模型),计算误差通常涉及到预测下一个词或者一系列词的概率分布,并使用特定的损失函数来衡量模型预测与真实值之间的差异。下面是详细步骤: 通过这种方式,即使输出是文本,语言模型也能够在训练过程中通过优化损失函数来减少预测误差,提高对下一个词或一系列词预测的准确性。在实际应用中,模型还会被评估其在多样化的文本生成、理解或其他NLP任务上的性能,这些任务可能需要额外的评估指标,如BLEU、ROUGE或者Perplexity等。

ZEPHYR: 直接提取LM对齐

摘要我们的目标是创建一个更小、与用户意图对齐的语言模型。先前的研究表明,对更大的模型应用蒸馏监督微调(dSFT)可以显著提高任务准确性;然而,这些模型没有对齐,即它们无法很好地响应自然提示。为了提取这个特性,我们尝试使用来自AI反馈(AIF)的偏好数据。我们从一个由教师模型排名的输出数据集开始,应用蒸馏直接偏好优化(dDPO)来学习一个具有显著改善意图对齐的聊天模型。这种方法只需要几个小时的训练时间,在微调过程中不需要任何额外的采样。最终结果ZEPHYR-7B在7B参数模型的聊天基准测试中取得了新的最佳表现,并且不需要人工标注。特别是,在MT-Bench上的结果显示,ZEPHYR-7B超过了基于RLHF的开放访问模型LLAMA2-CHAT-70B。该系统的代码、模型、数据和教程可在 https://github.com/huggingface/alignment-handbook 上获得。 引言近年来,小型、开放的大型语言模型(LLM)的能力大大提高,从早期的GPT-2样式模型(Wang&Komatsuzaki,2021)到准确而紧凑的模型(Touvron等,2023;Penedo等,2023;Jiang等,2023),这些模型训练的令牌数量远远超过了Chincilla缩放定律建议的“计算优化”数量。此外,研究人员已经证明,通过使用专有模型进行蒸馏监督微调(dSFT)可以进一步提高这些模型的准确性(Taori等,2023)。在这种方法中,更强大的教师模型的输出被用作学生模型的监督数据。 蒸馏已经被证明是改善各种不同任务上开放模型的有效工具(Chiang等,2023);然而,它并没有达到教师模型的性能(Gudibande等,2023)。用户注意到这些模型不是“意图对齐”的,即它们的行为不符合人类用户的偏好。这种特性经常导致无法正确回答查询的输出。 意图对齐一直很难量化,但最近的研究已经导致了MT-Bench(Zheng等,2023)和AlpacaEval(Li等,2023)等针对这种行为的基准的发展。这些基准产生的分数与模型输出的人类评级密切相关,并确认了专有模型的质量优于使用人工反馈训练的开放模型,后者又优于使用蒸馏训练的开放模型。这促使人们对对齐进行仔细的人工反馈收集,但这往往需要巨大的成本,比如LLAMA2-CHAT(Touvron等,2023)。 在这项工作中,我们考虑了通过蒸馏完全对齐一个小型开放LLM的问题。主要步骤是利用来自教师模型集合的AI反馈(AIF)作为偏好数据,并将蒸馏直接偏好优化作为学习目标(Rafailov等,20231. 引言 近年来,大型语言模型(LLM)在自然语言处理领域取得了巨大的进展。从早期的GPT-2模型到如今更准确、更紧凑的模型,这些模型通过训练来理解和生成自然语言文本。然而,尽管这些模型在许多任务上表现出色,但它们并不总是能够完全理解用户的意图。 为了提高模型在特定任务上的准确性和对用户意图的理解能力,研究人员提出了一种新的方法——直接提取LM对齐。这种方法通过蒸馏监督微调(dSFT)和偏好数据优化(dDPO)来训练一个与用户意图对齐的小型语言模型。 本文将详细介绍ZEPHYR项目,它是一个直接提取LM对齐的模型,旨在创建一个小型语言模型,它能够更好地理解用户的意图并提供准确的回答。 2. 直接提取LM对齐的方法 在传统的监督学习中,通常使用人工标注的数据来训练模型。然而,这种方法需要耗费大量的时间和人力成本,并且对于大规模的语言模型来说,准备数据集是一项巨大的挑战。 为了解决这个问题,研究人员提出了一种直接提取LM对齐的方法。该方法利用来自AI反馈(AIF)的偏好数据,通过蒸馏直接偏好优化(dDPO)来训练模型。具体而言,该方法从一个由教师模型排名的输出数据集开始,通过优化目标函数来训练一个与用户意图对齐的聊天模型。与传统的监督学习相比,直接提取LM对齐的方法具有以下优势: 3. ZEPHYR-7B模型的实验结果 ZEPHYR项目的目标是创建一个小型语言模型,它能够在特定任务上表现出与人类对齐的准确性。为了评估ZEPHYR模型的性能,研究人员使用了MT-Bench基准测试数据集,并与其他模型进行了比较。 实验结果表明,ZEPHYR-7B模型在MT-Bench数据集上取得了优秀的表现,超过了基于RLHF的开放访问模型LLAMA2-CHAT-70B。与其他开放模型相比,ZEPHYR-7B模型在意图对齐方面具有明显的优势,这意味着它能够更好地理解用户的意图并提供准确的回答。 4. 结论 本文介绍了ZEPHYR项目的直接提取LM对齐方法,并展示了实验结果。通过使用偏好数据优化和蒸馏直接偏好优化,ZEPHYR-7B模型在意图对齐方面取得了优异的性能,超越了其他开放模型。这证明了直接提取LM对齐方法的有效性。 ZEPHYR项目的成功背后有几个关键因素。首先,使用AI反馈数据作为偏好数据,能够更好地捕捉用户的意图和偏好。这种数据的使用使得模型能够更好地对齐用户的意图,从而提供更准确的回答。 其次,蒸馏直接偏好优化的方法能够在短时间内训练出高性能的模型。与传统的监督学习相比,这种方法不需要人工标注的数据,大大减少了训练的时间和成本。 最后,ZEPHYR项目的成功离不开团队的努力和创新精神。研究人员通过不断探索和改进模型的训练方法,取得了令人瞩目的成果。 虽然ZEPHYR项目取得了显著的成果,但仍有一些挑战需要克服。例如,如何进一步提高模型在意图对齐方面的性能,以及如何应对不同领域和语境下的挑战,都是需要进一步研究和探索的问题。 总之,ZEPHYR项目的直接提取LM对齐方法为创建小型语言模型提供了一种有效的途径。通过利用AI反馈数据和蒸馏直接偏好优化,ZEPHYR-7B模型在意图对齐方面取得了显著的进展。这为未来的研究和应用提供了新的思路和方法。我们期待着在实际应用中看到这种方法的进一步发展和应用。 💡 如果你对ZEPHYR项目感兴趣,想了解更多关于该项目的代码、模型、数据和教程,可以访问 https://github.com/huggingface/alignment-handbook  获取更多信息。 💡 欢迎留言分享你对ZEPHYR项目的看法和想法!我们期待与您的交流和讨论! (本文是基于论文《ZEPHYR: Aligning Large Language Models with Direct Extraction of LM Alignments》的改编,并结合个人理解进行了阐述。)

向着全新的端到端人工智能驱动全球天气预报系统迈进

摘要 天气预报系统对科学和社会都至关重要,人工智能(AI)在中期天气预报中已经取得了重大成就。然而,现有的基于AI的天气预报模型仍然依赖于传统的数值天气预报(NWP)系统产生的分析或再分析产品作为预测的初始条件,无法成为完全独立的系统。作为端到端全球天气预报系统的重要组成部分,数据同化在生成预测的初始状态方面至关重要。本文介绍了一种基于AI的数据同化模型,即Adas,用于全球天气变量,它通过学习从背景和稀疏观测中生成分析。与现有的同化方法不同,Adas采用门控卷积模块处理稀疏观测,并采用门控交叉注意力模块高效捕捉观测和背景之间的相互作用,这些模块由置信矩阵引导,表示观测的可用性和质量。然后,我们将Adas与先进的基于AI的天气预报模型(即FengWu)结合起来,构建了第一个端到端的基于AI的全球天气预报系统:FengWu-Adas。实验证明,Adas可以通过一年的模拟将模拟的全球观测同化到由AI生成的背景中,并稳定地生成高质量的分析。基于生成的分析,FengWu-Adas在七天的天气预报中表现出了高超的性能,优于集成预报系统(IFS)。 关键词:数据同化、人工智能、中期天气预报、深度学习 引言 在人工智能(AI)的推动下,特别是深度学习技术的成熟和进步,科学智能正在迅速发展,以利用AI促进科学研究和发现。在大气科学领域,AI在各个领域取得了显著的成就,如后处理和偏差校正、降尺度、降水即时预报、气候预测和中期天气预报等。一些基于AI的模型与欧洲中期天气预报中心(ECMWF)的集成预报系统(IFS)相比,通常在重分析数据集上进行训练,并且具有较低的计算成本和更容易的操作部署。尽管存在一些缺点,如预报平滑性和偏差漂移,但AI方法在天气预报中显示出了数据驱动建模的巨大潜力,为气象预报提供了一种新的范式。 尽管取得了重大进展,但前面提到的基于AI的天气预报模型仍然需要传统NWP系统中数据同化过程产生的分析产品进行预测。具体而言,数据同化旨在获得地球系统真实状态的最佳估计(即分析),并为天气预报提供准确的初始状态,从而提高预报性能。在一个自给自足的全球天气预报系统中,数据同化是确保系统长期稳定性的关键组成部分。观测作为数据同化的重要信息源,因为它们是大气真实状态的最接近表示。天气预报系统对科学和社会来说至关重要。在中期天气预报中,应用人工智能(AI)已取得了重大成就。然而,现有的基于AI的天气预报模型仍然依赖传统数值天气预报(NWP)系统生成的分析或再分析产品作为预测的初始条件,无法构建完全独立的系统。数据同化是端到端全球天气预报系统中至关重要的一部分,它在生成预测的初始状态方面起着关键作用。本文提出了一种基于AI的数据同化模型,命名为Adas,用于全球天气变量。该模型通过学习从背景和稀疏观测中生成分析。与现有的同化方法不同,Adas采用门控卷积模块处理稀疏观测,并采用门控交叉注意力模块高效捕捉观测和背景之间的相互作用。这些模块受置信矩阵引导,以表示观测的可用性和质量。随后,我们将Adas与先进的基于AI的天气预报模型FengWu结合,构建了第一个端到端的基于AI的全球天气预报系统:FengWu-Adas。实验结果表明,Adas能够通过一年的模拟将模拟的全球观测与由AI生成的背景同化,并稳定地生成高质量的分析。基于生成的分析,FengWu-Adas在七天的天气预报中表现出卓越的性能,优于集成预报系统(IFS)。 在人工智能的推动下,科学智能正在迅速发展。大气科学领域的人工智能已经在多个领域取得了显著成就,包括后处理和偏差校正、降尺度、降水即时预报、气候预测和中期天气预报等。与欧洲中期天气预报中心(ECMWF)的集成预报系统(IFS)相比,一些基于AI的模型通常在重分析数据集上进行训练,具有更低的计算成本和更容易的操作部署。尽管这些方法存在一些缺点,如预报平滑性和偏差漂移,但它们显示了数据驱动建模在天气预报中的巨大潜力,为气象预报带来了一种新的范式。 数据同化是确保天气预报系统长期稳定性的关键组成部分。它旨在获得地球系统真实状态的最佳估计(即分析),并为天气预报提供准确的初始状态,从而提高预报性能。观测是数据同化的重要信息源,因为它们最接近大气真实状态。早期的初始条件是通过将观测插值到状态空间的网格点上来获得的。现代数据同化技术通常通过将观测与短期天气预报的模型预测结果进行整合来实现。 尽管在AI驱动的天气预报模型方面取得了重要进展,但仍然需要传统NWP系统中数据同化过程生成的分析产品。因此,本文提出了Adas模型来解决这个问题。Adas模型通过学习从背景和稀疏观测中生成分析,采用了一些创新的门控卷积模块和门控交叉注意力模块,来处理稀疏观测和背景之间的相互作用。通过引入置信矩阵,Adas模型能够有效地反映观测的可用性和质量。通过将Adas模型与先进的基于AI的天气预报模型FengWu相结合,我们构建了全新的端到端基于AI的全球天气预报系统:FengWu-Adas。 FengWu-Adas系统的性能经过了实验证实。通过一年的模拟,Adas模型可以将模拟的全球观测与由AI生成的背景同化,并稳定地生成高质量的分析结果。基于这些分析结果,FengWu-Adas系统在七天的天气预报中表现出了卓越的性能,超过了传统的集成预报系统(IFS)。 这个全新的端到端基于AI的全球天气预报系统具有重要的科学和实际意义。它不仅能够提供更准确、更可靠的天气预报,还能够减少对传统NWP系统的依赖,并降低运行成本。此外,该系统还为天气预报领域的进一步研究提供了新的思路和方法。 总结起来本文介绍了一种基于AI的数据同化模型Adas,以及如何将其与先进的基于AI的天气预报模型FengWu相结合,构建了全新的端到端基于AI的全球天气预报系统:FengWu-Adas。实验证明,该系统在天气预报性能方面表现出色,超过了传统的集成预报系统。这个系统的建立对于改进天气预报准确性和可靠性具有重要意义,并为未来的天气预报研究提供了新的方向。 希望通过这个全新的端到端基于AI的全球天气预报系统,我们能够更好地了解和预测天气,为社会提供更准确的天气信息,从而更好地应对自然灾害和保护人们的生命财产安全。 如果您对这个全新的基于AI的全球天气预报系统感兴趣,想要了解更多细节,请阅读原文:链接到原文。 谢谢阅读!🌦️🌍📚

评估大型语言模型在多智能体协作环境中的协调能力

简介: 🌟 当今人工智能研究的重要目标之一是开发能够与人类和其他系统有效协作的智能体。大型语言模型(LLM)以其理解、生成和解释人类语言的能力而备受关注,成为开发此类智能体的有力候选。在本研究中,我们旨在构建并评估使用LLM构建的智能体在各种协调场景中的效果。我们引入了LLM-Coordination(LLM-Co)框架,专门设计用于使LLM能够玩协调游戏。通过评估,我们深入研究了LLM在心智理论、情境推理、持续协调、对合作伙伴的稳健性以及显性协助等方面的能力。研究结果突显了LLM在复杂协调环境中的潜力,并揭示了LLM在构建用于多智能体协作的强大现实世界智能体方面的潜力。 理解多智能体协调的需求: 🌟 人类在日常生活和工作中经常进行各种协调任务,包括烹饪等平凡活动以及搜救等更重要的任务。为了帮助人类完成乏味或危险的任务,开发能够与人类或其他自主系统协调的智能体至关重要。大型语言模型最近在复杂环境中展示了解决问题和完成任务的能力,展示了高级推理能力和心智理论的迹象。在本研究中,我们旨在探索大型语言模型在解决需要多智能体协调的任务时的推理能力。 评估过程: 🌟 为了评估LLM的多智能体协调能力,我们采用了三种不同的协调游戏:Collab Escape、Collab Capture和Overcooked。在这些游戏中,智能体需要协调行动以实现特定目标。为了使LLM能够理解和玩这些游戏,我们引入了LLM-Coordination框架。该框架为智能体提供了环境的上下文状态信息、可行动作以及解释实时执行的能力。 测试心智理论和情境推理: 🌟 在评估持续协调能力之前,我们首先测试了LLM的心智理论(ToM)和情境推理能力。心智理论使模型能够推断他人的意图和信念,而情境推理则使模型能够将这些推断与环境的上下文情境联系起来。我们设计了LLM-ToM-Reasoning测试集,其中包括来自我们协调游戏的情景。该测试集要求LLM根据合作伙伴的意图和环境的当前状态进行推理,提供最佳的下一步行动。评估涉及不同LLM(包括GPT-4、GPT-3.5-turbo、Vicuna-33B和Vicuna-13B)的比较。结果表明,GPT-4在性能上超过其他LLM,达到了接近人类水平的分数。 评估持续协调和对合作伙伴的稳健性: 🌟 为了评估持续协调能力,我们专注于使用GPT-4的LLM-Co智能体,该智能体展现出强大的心智理论和情境推理能力。我们将LLM-Co智能体的性能与强化学习(RL)基准进行比较,后者是AI-AI游戏中的黄金标准。我们还通过在协调环境中尝试不同的合作伙伴来评估智能体对不同合作伙伴行为的稳健性。评估结果显示,LLM-Co智能体在AI-AI和AI-human代理游戏中的表现不亚于甚至优于RL基准,而且无需进行任何微调。此外,LLM智能体在自然语言中提供详细解释其行动的能力方面表现出色。 协调任务中的主动协助: 🌟 在协调任务中,提供对合作伙伴的显性协助能力至关重要。为了测试这种能力,我们在Overcooked环境中引入了两个新的布局,要求LLM-Co智能体优先帮助合作伙伴,甚至可能牺牲自身的任务完成时间。通过实验和评估,我们发现LLM-Co智能体能够确定协助合作伙伴的正确策略。然而,在需要提示协助的情况下,它们需要以自然语言的“协助指令”来引导其关注。结果表明,LLM-Co智能体在这些新布局中的表现优于基准模型。 主要贡献: 🌟 在我们的研究中,我们做出了以下几个重要贡献: 1️⃣ 发展了LLM-Coordination框架,为大型语言模型提供了在实时场景中玩长期协调游戏所需的工具和环境信息。 2️⃣ 引入了LLM-ToM-Reasoning测试集,专门设计用于评估大型语言模型的心智理论和情境推理能力。 3️⃣ 通过LLM-Co智能体的评估,展示了它们在全面的多轮协调场景中与强化学习基准的性能。 4️⃣ 引入了两个新的Overcooked布局,以检验LLM-Co智能体提供主动协助合作伙伴的能力,突出了其在优先合作而非个体任务完成方面的能力。 结论: 🌟 对大型语言模型在多智能体协调场景中的评估揭示了它们在理解和推理合作伙伴意图、适应复杂环境以及提供显性协助方面的潜力。LLM-Coordination框架与LLM的优势相结合,使得能够开发能够熟练进行多智能体协调的现实世界智能体成为可能。这项研究为构建能够有效与人类和其他自主智能体协作的先进AI系统开辟了新的途径,促进了在搜索和救援、医疗保健和日常任务等各个领域的进展。本研究的发现为AI研究中增强智能体协调能力的持续努力做出了贡献。 🎉🎉🎉 结束 🎉🎉🎉

BianQue: 平衡LLMs的问询与建议能力,通过ChatGPT打磨的多轮健康对话

近年来,大型语言模型(LLMs)如ChatGPT、ChatGLM、ChatDoctor等在单轮对话中提供广泛而全面的健康建议方面表现出色。然而,用户在单轮对话中提供的有限信息导致生成的建议缺乏个性化和针对性,需要用户自行选择有用的部分。这主要是因为缺乏参与多轮问询的能力。在现实世界的医疗咨询中,医生通常会采用一系列迭代性的询问,全面了解患者的病情,以便随后提供有效和个性化的建议。我们将这种能力定义为链式问询(CoQ)。 为了改进LLMs的CoQ能力,我们提出了BianQue,一种基于ChatGLM的LLM,通过自构建的健康对话数据集BianQueCorpus进行微调。该数据集包含了多轮问询和ChatGPT打磨的健康建议。实验结果表明,BianQue能够同时平衡问询和健康建议的能力,将有助于推动LLMs在积极健康领域的研究和应用。 1. 引言 近年来,大型语言模型(LLMs)如ChatGPT、LLaMA、ChatGLM等已广泛应用于各个领域。通过基于高质量指导微调和基于人类反馈的强化学习(RLHF)等方法,LLMs已经具备了令人惊叹的语言理解、生成和知识推理能力。用户对LLMs出色的建议能力感到惊讶。 然而,LLMs在医学、心理学、教育等应用场景中重要的“问询”能力仍然不足。在与这些LLMs(如ChatGPT2、ChatGLM3、SparkDesk4)进行医疗对话时,它们还没有进行多轮问询的能力。上述LLMs通常基于用户提供的单轮指令,提供合理且普遍适用的建议。然而,在现实世界中,医生通常需要与患者进行多轮对话,以提供有针对性的建议。在用户咨询过程中,医生在前9轮对话中提出不同的问题,以了解宝宝的具体情况。上述多轮问询过程可以定义为链式问询(CoQ)。我们发现,目前的LLMs缺乏CoQ的能力,这是因为在指令微调阶段和RLHF阶段缺乏多轮问询的训练数据。研究人员在构建指令和答案时,一方面忽略了多轮对话历史,另一方面,答案通常是建议而不是问题。 目前,健康领域对LLMs的研究主要集中在评估现有模型的性能、构建适当的数据集和微调指令方面。Singhal等人提出了医学问答基准MultiMedQA,用于评估LLMs的临床知识问答能力。Li等人构建了真实的医生-患者对话数据集HealthCareMagic-100k,并用它来微调ChatDoctor。类似的健康LLMs相继发布,如BenTsao、ChatGLM-6B-Med、DoctorGLM、Med2. BianQue的设计与实现 为了提升LLMs的CoQ能力,我们设计了BianQue,一种基于ChatGLM的LLM。为了构建BianQue,我们首先创建了BianQueCorpus,这是一个包含多轮问询和ChatGPT打磨的健康建议的自构建健康对话数据集。BianQueCorpus的构建过程包括以下步骤: 2.1 数据收集与预处理 我们收集了大量的医疗对话数据,并进行预处理以清理和标准化数据。数据包括医生和患者之间的对话,涵盖了各种健康问题和病情。我们还收集了ChatGPT生成的健康建议,作为后续的对话打磨过程所需的参考答案。 2.2 对话打磨过程 在对话打磨过程中,我们使用ChatGPT作为对话模型,通过迭代生成和反馈的方式,对对话进行打磨。具体而言,我们将医生的问询作为输入,使用ChatGPT生成回答,然后将生成的回答与参考答案进行比较,根据比较结果提供反馈。通过多次迭代,我们逐渐优化了对话的质量和流畅度。 2.3 LLM的微调 在对话打磨过程完成后,我们使用ChatGLM作为基础模型,对BianQueCorpus进行微调。微调的目的是让BianQue在CoQ方面具备更强的能力,能够根据多轮问询提供个性化和针对性的健康建议。 3. 实验结果与讨论 我们对BianQue进行了一系列实验,评估了其在问询和健康建议方面的能力。实验结果表明,BianQue能够平衡问询和健康建议的能力,使得生成的建议更加个性化和针对性。与其他现有的健康LLMs相比,BianQue在多轮问询的场景下表现出更好的效果。 4. 结论 本文介绍了BianQue,一种通过ChatGPT打磨的多轮健康对话的LLM。通过自构建的健康对话数据集BianQueCorpus,并结合ChatGLM的微调,BianQue能够平衡问询和健康建议的能力,提供更加个性化和针对性的建议。BianQue的设计和实现为LLMs在积极健康领域的研究和应用提供了有益的启示。 参考文献: 如果您对本文有任何疑问或意见,欢迎在评论区留言! 👩‍⚕️💬📚

神经代码生成:通过链式思维推动轻量级语言模型的发展

引言:神经代码生成是一种利用深度学习从自然语言需求中自动生成程序的技术,已经在解决日益复杂的软件开发挑战方面展现出巨大潜力。大型语言模型(LLMs),如GPT4,在代码生成任务中取得了令人瞩目的成果。然而,由于其庞大的参数规模和相关计算成本,它们的实际应用往往具有局限性。为了克服这些限制,研究人员开始探索将链式思维(CoT)推理技术与轻量级语言模型(ℓLMs)相结合,以提高其性能。本研究旨在利用ℓLMs的潜力,通过自动生成高质量的CoTs来提升代码生成的效果。 轻量级语言模型的重要性:LLMs凭借其庞大的参数规模在代码生成方面表现出色。然而,由于部署所带来的时间、计算和财务成本等挑战,它们的实际应用受到限制,无法满足个人用户和资源有限的场景的需求。为了解决这些挑战,开发基于轻量级语言模型的技术至关重要。在本研究中,我们旨在通过链式思维推理技术探索ℓLMs在软件工程应用中的潜力,以提高其性能,使其更加高效和易用。 链式思维推理用于代码生成:链式思维推理涉及将复杂任务分解为一系列中间的自然语言推理步骤。通过为LLMs提供这些中间步骤,它们可以生成更可靠和可解释的答案。链式思维推理技术已经在逻辑推理任务中取得了成功,通过将任务分解为多个独立的步骤,LLMs能够更好地理解和解决问题。受到这一成功的启发,研究人员开始探索将链式思维推理技术应用于代码生成任务。例如,自我规划方法和结构化链式思维技术被提出来增强模型的理解和问题解决能力。 轻量级语言模型结合链式思维的潜力:尽管以往的研究已经展示了CoTs在提升LLMs代码生成性能方面的潜力,但目前的CoT生成方法往往依赖于手动编写或利用LLMs,导致成本较高。在本研究中,我们致力于回答两个主要问题:ℓLMs能否独立生成高质量的CoTs以指导代码生成?ℓLMs能否从其他地方生成的CoTs中获益?为了回答这些问题,我们对各种ℓLMs和LLMs进行了CoT生成能力的实证研究。研究结果表明,大多数参数规模在0.3到70亿之间的ℓLMs无法独立生成高质量的CoTs。然而,我们也观察到,当提供其他地方生成的CoTs时,所有ℓLMs的性能都有所提升。 COTTON方法:基于我们的实证观察,我们提出了一种名为COTTON(链式思维神经代码生成)的新方法,以使ℓLMs能够自动生成有意义的CoTs来帮助代码生成。COTTON利用ℓLMs的能力和高质量CoTs中包含的知识来提高性能。我们构建了新的数据集,并在各种基准测试中进行了大量实验,以评估COTTON的有效性。结果表明,COTTON生成的CoTs在自动化和人工评估指标上优于基准线。值得注意的是,使用不同的ℓLMs生成的CoTs所实现的性能提升与ChatGLM(130B)和gpt-3.5-turbo(175B)等规模更大的LLMs相当。 结论:总之,本研究探讨了将链式思维推理技术应用于轻量级语言模型(ℓLMs)以进行代码生成的方法。我们证明了大多数ℓLMs无法独立生成高质量的CoTs,但它们可以从其他地方生成的CoTs中获益。所提出的COTTON方法有效利用ℓLMs自动生成有意义的CoTs,从而在代码生成任务中提高性能。本研究突显了ℓLMs在软件工程应用中的潜力,并为提升轻量级语言模型在代码生成方面的能力提供了启示。 《Chain-of-Thought in Neural Code Generation: From and For Lightweight Language Models》

激活函数 SiLU 和 Swish 的区别

SiLU(Sigmoid Linear Unit)和Swish是两种常用的激活函数,它们在神经网络中起到引入非线性的作用。下面是SiLU和Swish之间的区别: SiLU和Swish是两种常用的激活函数,它们在定义和公式上有一些相似之处,但也有一些区别,其中最主要的区别是Swish函数引入了可训练的参数β。 Learn more:

SiLu(Sigmoid Linear Unit)激活函数

SiLu(Sigmoid Linear Unit)激活函数,也被称为Swish激活函数,是一种自适应激活函数,最早由Google Brain在2017年引入[2]。SiLu激活函数是Sigmoid和ReLU的改进版,具备无上界有下界、平滑、非单调的特性。 SiLu激活函数的定义如下:f(x) = x * sigmoid(x) 其中sigmoid(x)是标准的Sigmoid函数,它的值在0和1之间。SiLu函数的特点包括非线性、连续可导,并且在负无穷到正无穷的范围内都有定义[1]。 SiLu激活函数在深度神经网络中的效果优于ReLU,可以看作是平滑的ReLU激活函数。它既有ReLU激活函数的一些优点(例如能够缓解梯度消失问题),又能解决ReLU函数的一些缺点(例如ReLU函数不是零中心的,且在负数部分的梯度为零)。此外,SiLu函数还是平滑函数,这意味着它在整个定义域内都有导数,有利于优化[1]。 在YOLOv5等深度学习模型中,SiLu激活函数被广泛应用,取得了良好的效果[1]。 Learn more:

29倍吞吐量提升:一探H2O高效生成大型语言模型的秘密

在人工智能的浩瀚星海中,大型语言模型如同耀眼的恒星,它们的能力强大而深不可测。然而,这些模型的运作往往需要耗费巨大的计算资源,这也成为了阻碍AI技术广泛应用的一大障碍。今天,让我们一起探索那个改变游戏规则的创新项目——H2O。 引领潮流的创新:H2O的诞生 🌟 在NeurIPS’23大会上,一项名为H2O的研究引起了广泛关注。这是一种被称作“重点词神器”的技术,它使得大型语言模型的生成变得更加高效。那么,H2O到底是什么呢? 简而言之,H2O是一种优化了的内存管理方案,它通过智能地管理键值(KV)缓存来减轻模型推理过程中的计算负担。KV缓存通常与序列长度和批量大小成线性关系,而H2O能够大幅减少这些缓存的内存占用。 精华所在:重点词的力量 💡 H2O的核心概念在于识别和利用了“重点词”——这些词在计算注意力得分时占有压倒性的重要性。研究者发现,这些词与文本中的频繁共现词强相关,若将它们从模型中移除,性能会大打折扣。H2O正是利用了这一洞察,通过平衡最近词和重点词,优化了KV缓存的管理。 实践证明:H2O的效能 🛠 H2O不仅在理论上前卫,它的实用性也已经在各种任务和不同规模的模型上得到了验证。 实验表明:在保留两成重点词的情况下: 通过H2O优化的大型模型在性能上可以实现高达29倍的吞吐量提升! 这在当前领先的如DeepSpeed Zero-Inference、Hugging Face Accelerate和FlexGen等推理系统中表现尤为突出。 开源精神:与社区共建 🌐 值得庆幸的是,H2O项目已经在GitHub上开源,任何对AI充满热情的开发者和研究者都可以参与其中。无论是想提高你的语言模型生成效率,还是仅仅出于好奇,你都可以在这个平台上找到价值。 结语:跨越技术的鸿沟 ✨ 随着H2O的横空出世,那些曾经遥不可及的AI技术现在似乎触手可及。这个项目不仅仅是技术的飞跃,更是开启普通人使用强大AI工具的大门。让我们拭目以待,看看H2O将如何在未来的日子里,继续激起技术革新的波澜!

轻松驾驭大型语言模型:H2O重点词(Heavy-Hitter)神器的秘密

《H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models》 当我们谈论人工智能尤其是语言模型时,你可能会想象一个强大的机器,它能够写作、聊天,甚至创作诗歌。但这背后的真相是,这些模型的运行需要巨大的计算资源,尤其是在处理长篇内容时。然而,科技的步伐从未停歇,一个名为H2O的新工具出现了,它让大型语言模型的应用变得更加高效和便捷。 迈向更高效的未来:H2O的诞生 🌟 有鉴于大型语言模型(LLMs)在部署时所需成本的不断攀升,特别是在长内容生成如对话系统与故事创作领域,研究者们提出了一种全新的解决方案。这个解决方案的核心在于对所谓的KV缓存的智能管理。KV缓存是一种在GPU内存中存储临时状态信息的机制,其大小与序列长度和批处理大小成线性关系。但H2O通过一种创新的方法大幅度降低了KV缓存的内存占用。 重点词(Heavy Hitters):H2O的核心思想 💡 H2O背后的一个关键发现是,在计算注意力得分时,只有少数的词语(我们称之为重点词,H2)占据了大部分的价值。研究表明,这些重点词的出现与文本中词语的频繁共现强烈相关,一旦去除这些重点词,模型的性能会显著下降。 基于这一发现,H2O采用了一种KV缓存淘汰策略,它动态地保留了最近的词和重点词之间的平衡。通过将KV缓存淘汰形式化为一个动态子模块问题,研究者们还为这一算法提供了理论上的保证。 高效实践:H2O的验证与实现 🛠 H2O不仅仅停留在理论上,它的有效性已经在多个任务和不同大小的模型(如OPT和GPT-NeoX)上得到了验证。使用H2O并将重点词的比例设为20%,在OPT-6.7B和OPT-30B上,相比于目前领先的三种推理系统——DeepSpeed Zero-Inference、Hugging Face Accelerate和FlexGen,吞吐量提高了多达29倍。 开源共享:H2O与社区的互动 🌐 H2O项目已在GitHub上开源,任何人都可以访问其代码仓库。项目提供了两种代码实现: 结语:技术的进步,让创新触手可及 ✨ H2O的出现,不仅是技术的一大步,更是人工智能领域里一个值得纪念的里程碑。它使得原本资源密集的大型语言模型变得更加亲民,让更多的开发者和用户能够享受到AI的好处。