Day: November 2, 2023

以强化学习让生成模型更符合人类审美:DDPO与TRL的完美结合以强化学习让生成模型更符合人类审美:DDPO与TRL的完美结合

亲爱的读者,你是否曾经想过,我们能否让人工智能生成的图片更符合人类的审美呢?今天,我们就要带你探索这个问题的答案。我们将介绍如何使用DDPO(Denoising Diffusion Policy Optimization)通过TRL(Transformers Library)微调稳定扩散模型,从而使AI生成的图像更符合人类的审美。这是一场充满挑战与创新的神经网络冒险之旅,让我们一起启程吧! 一、DDPO与微调扩散模型的优势 首先,我们必须理解的是,DDPO不是微调扩散模型的唯一方法,但它的优势却是显而易见的。以计算效率和准确性为首的一系列特点,使得DDPO成为了扩散模型微调的理想选择。相比于之前的方法,DDPO将去噪步骤视为一个多步马尔可夫决策过程(MDP),并在最终获得奖励。这种全新的方法,使得代理策略能够成为一个各向同性的高斯分布,而不是一个复杂的分布。因此,DDPO不仅提高了计算效率,还减少了误差的堆积,为我们提供了更精准的结果。 二、DDPO算法简述 DDPO算法主要使用了一种策略梯度方法,即近端策略优化(PPO)。在使用PPO的过程中,我们注意到,DDPO算法的独特之处主要体现在轨迹收集部分。为了更好地理解这个过程,我们提供了一个简单的流程图,帮助你理解DDPO在动作中的运作方式。 三、DDPO与RLHF:增强审美性的混合 了解了DDPO的工作原理后,我们会发现,将DDPO与RLHF(Reinforcement Learning from Human Feedback)结合起来,可以更有效地让模型的输出符合人类的审美。在这个过程中,我们首先使用预训练的扩散模型,然后收集人类偏好的数据并使用它来训练奖励模型,最后使用DDPO和奖励模型进行微调。这个过程不仅高效,而且结果非常令人满意,得到的图像更符合人类审美。 四、使用DDPO训练稳定扩散模型 让我们深入了解一下如何使用DDPO训练稳定扩散模型。首先,你需要具备一定的硬件条件,例如拥有一台A100 NVIDIA GPU。然后,安装trl库和其他一些必要的依赖。在设置完硬件和软件环境后,你就可以开始实际的训练过程了。 我们的训练过程主要使用了trl库中的DDPOTrainer和DDPOConfig类。我们提供了一个示例训练脚本,该脚本利用这两个类和一些默认参数,对预训练的稳定扩散模型进行微调。在训练过程中,我们使用了一种审美奖励模型,该模型的权重是从公开的HuggingFace仓库中读取的。因此,你不需要自己收集数据和训练审美奖励模型。 最后,我们通过python命令启动训练脚本,然后就可以看到训练过程的实时输出了。这个过程可能需要一些时间,所以请耐心等待。完成训练后,你就可以使用微调后的模型生成新的图像了。 五、总结 今天,我们一起探讨了如何使用DDPO通过TRL微调稳定扩散模型。在这个过程中,我们深入了解了DDPO的优势和工作原理,以及如何将其与RLHF结合起来,以便更好地使模型的输出符合人类的审美。我们还详细介绍了使用DDPO训练稳定扩散模型的具体步骤。 [...]

让人工智能向无穷无尽的流畅表达迈进 — 探索“注意力吸收器”让人工智能向无穷无尽的流畅表达迈进 — 探索“注意力吸收器”

在我们日常的对话中,有没有想过让人工智能(AI)也能如人类一样自由流畅地进行长时间的交流?今天,我们将一同探索一种新的技术——“注意力吸收器”,它可能会引领我们走向这个目标。 为何我们需要“注意力吸收器”? 大规模语言模型(LLMs)近年来引领了聊天机器人和虚拟助手的技术进步,但是,它们也存在一些限制。这些限制主要体现在两个方面:视频随机存取内存(VRAM)的使用和流畅度的丧失。 当我们使用LLMs进行长时间的对话时,模型的VRAM使用会呈线性增长,这可能会导致设备的内存限制。另一方面,当输入的内容过长,模型的表达流畅度会明显下降,表现为生成无意义的字符,或者重复的词汇。为了解决这些问题,我们研究了一种名为“注意力吸收器”的方法。 窗口注意力:一种尝试解决方法 为了解决VRAM使用问题,我们可以尝试限制输入到LLM的令牌数量,这种方法被称为窗口注意力。 在实验中,我们将窗口大小设置为1024个令牌。结果显示,虽然这种方法可以保持内存的稳定使用,但是一旦超过窗口大小,模型的表达能力就会显著下降。 注意力吸收器:新的解决思路 2023年,Xiao等人发现,当应用窗口注意力时,模型在窗口中的第一个令牌被移除后,模型的流畅度立即下降。他们注意到,即使是语义上不重要的令牌,也会占据大量的注意力分数。他们将这些令牌称为“注意力吸收器”。 基于这个发现,他们提出了一种改进的窗口注意力方法,即在窗口中始终保留初始的四个令牌,也就是“注意力吸收器”。这种方法有效地解决了窗口注意力中的一个关键问题:当第一个令牌从窗口中移除时,模型无法将注意力分数转移到该令牌上,从而导致模型失去流畅度。 结论:注意力吸收器的威力 我们使用注意力吸收器进行了实验,结果显示,使用注意力吸收器的LLMs同时具备了稳定的空间复杂度和流畅的表达能力。这表明,使用注意力吸收器,我们的模型可以保持流畅的表达,直到我们的数据耗尽。 注意力吸收器让我们的AI更接近无穷无尽的流畅表达。尽管这仍然是一个新的领域,但我们希望这种方法能够推动AI技术的前进,为我们的日常生活带来更多的便利。 在未来,我们期待看到更多的研究者和开发者参与到这个领域中来,共同推动AI技术的发展,让我们的AI可以更好地理解我们,更好地服务我们。 [...]

解密大型语言模型的无尽流畅性:探索”注意力汇聚”现象解密大型语言模型的无尽流畅性:探索”注意力汇聚”现象

欢迎来到这个探索大型语言模型(LLMs)无尽流畅性的神奇旅程。在这篇文章中,我们将研究一种新的技术策略,即”注意力汇聚”,它在Hugging Face的博客中被详细介绍。这种策略对于改进LLMs,如所有Llama、Mistral、MPT、Falcon和GPT-NeoX(Pythia)模型的性能有着重要的影响。现在,让我们一起揭开这个神秘现象的面纱! LLMs的局限性:VRAM和流畅性问题 首先,我们需要理解LLMs在现实应用中面临的挑战。其中,最重要的两个问题是VRAM使用和流畅性的丧失。在聊天助手场景中,这意味着设备的VRAM限制将限制用户连续提问的能力。同时,所有至今为止训练过的LLMs在输入过长时都会遇到流畅性的丧失问题,这会导致模型生成的语言失去连贯性。 窗口注意力:一种尝试解决VRAM问题的方法 为了解决VRAM使用问题,我们可以尝试限制输入给LLMs的令牌数量,这就是”窗口注意力”的概念。然而,实验结果显示,这种方法并不能有效地解决问题。一旦生成的令牌数超过窗口大小,模型的复杂度会立即上升。 注意力汇聚:解决流畅性问题的新策略 好在,我们发现了一个新的解决策略:注意力汇聚。研究人员发现,在应用窗口注意力的过程中,LLMs为生成下一个令牌分配了大量的注意力分数给前几个令牌,即便这些令牌在语义上并不重要。因此,当第一个令牌从窗口中移除时,模型无法将注意力分数装载到该令牌上,导致模型“崩溃”并丧失流畅性。 为了解决这个问题,研究人员提出了一种改良的窗口注意力方法,它始终保留序列中的初始4个令牌,即注意力汇聚令牌。 注意力汇聚的实践效果 实验数据显示,使用注意力汇聚的LLMs在空间复杂性和困惑度上都表现出了稳定性。此外,按照这种方式,可以无限生成文本而不会出现模型流畅性的丧失。 结论 总的来说,注意力汇聚为我们提供了一种新的解决LLMs问题的方法:通过保留注意力汇聚令牌,我们可以避免模型在生成过程中失去流畅性,并保持恒定的VRAM使用。这种方法对于改进聊天助手、虚拟助手等基于LLMs的应用具有重要的实践价值。 [...]

【深度揭秘】StreamingLLM:大型语言模型的“无限长”生成能力【深度揭秘】StreamingLLM:大型语言模型的“无限长”生成能力

在今天的科技热点之旅中,我们要探讨的是一个源自语言模型领域的新词:StreamingLLM。这个强大的技术,旨在打破大型语言模型(LLM)在推理时只能记住有限上下文的限制。音乐会有无尽的旋律,那么,人工智能的语言模型是否也能拥有无尽的生成能力呢?让我们一起揭秘这个问题的答案。 1. LLM的限制:有限的上下文记忆 先让我们理解一下问题的背景。在现行的语言模型,如LLama2中,模型只能处理4K长度的上下文。这个限制导致了两个问题:一是模型无法记住超过最近4K上文的内容,二是当生成文本达到4K时,模型会自动停止。这在某种程度上限制了我们对AI对话助手的期望,我们希望它能不受输出长度的限制,并记住历史的对话。 2. StreamingLLM的提出:无限序列长度的输入和输出 然后,MIT,Meta AI,CMU的研究团队提出了一个全新的解决方案:StreamingLLM。他们声称,这种方法可以使得大型语言模型在无需任何微调的情况下,推广到无限序列长度的输入和输出。请注意,这个方法并没有增加LLM的对上文的记忆,只是让它输入输出无限长。这样的好处显而易见,例如,当你需要对话机器人生成一个很长的回答时,你不再需要输入“继续”。 3. StreamingLLM的核心技术:Attention Sink 那么,StreamingLLM是如何实现这个目标的呢?关键在于MIT韩松老师实验室的主要作者Guangxuan Xiao提出的一个名叫“Attention Sink”的技术。这个技术在处理Transformer推理时,解决了一些非常有趣的问题。他们的研究成果在学界得到了广泛的关注,并已经在github上开源。 4. StreamingLLM的解决挑战:处理无限输入的LLM StreamingLLM的目标是在不牺牲效率和性能的情况下,部署一个能处理无限输入的LLM。这样的模型可以不受长度限制不停地输出,具体效果可以参考他们的主页视频。然而,这并非易事,面临着诸多挑战。 一个挑战是在解码阶段,由于KV Cache的存在,会导致内存使用或延迟增加,而内存上线和推理服务SLA的存在,又使得KV Cache不能无限大,这构成了性能瓶颈。另一个挑战是现有模型的外推能力有限,当序列长度超过预训练时设定的注意力窗口大小时,它们的表现会下降,这是模型能力的瓶颈。 在面对这些挑战时,StreamingLLM通过使用近似注意力的方法,放松了对全部输入记忆的限制,仍然只记住最近的上下文,但实现了处理无限输入并获得无限输出的效果。 5. StreamingLLM的突破:Attention Sink StreamingLLM的另一项重大突破是他们提出了“attention sink”概念,这被认为是解决以上挑战的关键。简单来说,”attention sink”是一个技术,它将注意力集中在最近的上下文中,而非全部的上下文。这种方法大大节省了内存和计算资源,克服了KV Cache的限制,而且它使得模型可以处理无限长度的输入输出,这无疑是对现有模型的重大突破。 6. StreamingLLM的实践应用 [...]