Day: May 30, 2024

LLMs与多模态生成及编辑:一项综述LLMs与多模态生成及编辑:一项综述

引言 内容概述 近年来,随着大型语言模型(LLMs)的快速发展,越来越多的研究开始关注将LLMs与多模态学习相结合。以往的多模态大语言模型(MLLMs)研究主要集中在理解上,而本综述将详细探讨多模态生成领域,涵盖图像、视频、3D和音频等多个领域,并重点介绍这些领域中的里程碑式工作。 研究范围 本综述探讨了包括图像、视频、3D模型和音频在内的多种模态的生成。多模态生成包括不同模态的单独生成以及多模态的联合生成。我们不会深入讨论纯文本生成,因为已有许多专门针对该领域进展的综述。我们的主要关注点是近年来出现的大型语言模型如何在生成其他视觉和音频模态方面提供帮助,特别是在开放领域生成中的应用。 相关研究 单模态生成综述 许多综述文章专注于单一模态的生成,例如图像生成[115]、视频生成[116]、3D生成[117]和音频生成[118]。这些研究主要采用预训练的CLIP或T5等语言编码器进行开放领域的文本指导生成。随着LLMs的出现,越来越多的生成工作利用强大的LLMs来增强每种模态的生成能力。我们的工作主要讨论LLMs在各个模态生成中的作用,这是以前的综述中缺乏的。 LLMs综述 大量综述文章探讨了LLMs的各个方面。例如,[121]对基于LLMs的自主代理进行了全面审查。此外,[122]和[123]介绍了多模态LLMs,介绍了将LLMs与其他非文本模态结合的论文。这些综述既介绍了多模态理解,也介绍了多模态生成,但主要侧重于多模态理解。相比之下,我们的工作主要集中在生成方面,旨在探讨LLMs在每种模态生成过程中带来的性能和功能改进。 预备知识 生成模型 生成模型可以归纳为从先验分布中抽取潜在样本并将其转换为与目标数据分布对齐的生成样本的过程。以下是几种主要的生成模型: 多模态对齐模型 CLIP[23]是一种开创性的图像-语言对齐模型,通过对比学习同时学习图像编码器和文本编码器。它在多个下游任务中表现出色,如物体识别和视频动作识别。CLAP[131]则对齐文本和音频信息,用于文本指导的音频生成。 大型语言模型 现代大型语言模型利用Transformer架构生成上下文丰富的嵌入,这些模型在大量文本语料库上进行训练,然后针对特定任务进行微调。[137][138][139][140] 例如,GPT系列模型主要使用Transformer解码器,经过大规模多样化数据集的预训练后,能够生成高质量的文本。 多模态大型语言模型 多模态大型语言模型(MLLMs)最近开始兴起,旨在赋予LLMs理解或生成其他模态的能力。这些模型通常包含额外的预训练模态特定编码器,用于特征提取和输入投影,以及与LLM骨干对齐的多模态隐藏特征。[142][143][144][145][146] 图像生成与编辑 图像生成 使用CLIP进行文本指导的图像生成 过去,图像-文本对齐模型如CLIP[23]在文本指导的图像生成中发挥了重要作用,确保生成的图像与给定的文本提示相符。这些模型通过对齐文本编码器和图像编码器的嵌入,生成与文本描述相匹配的图像。[12][169][200][10][201][202] 使用LLMs进行文本指导的图像生成 随着MLLMs的发展,LLMs在视觉内容处理中的应用越来越广泛。MLLMs提供了统一的界面,用于理解和生成文本及视觉信息,增强了生成过程的交互性和可控性。例如,CM3Leon是一种自回归MLLM,能够同时生成文本和图像输出[156]。DreamLLM是第一个能够生成自由形式交错内容的MLLM,支持多轮对话,并且在图像描述和视频问答任务中表现出色[151]。这些模型通过结合视觉和语言信息,显著提高了图像生成的质量和用户体验。 图像编辑 使用CLIP/T5进行图像编辑 CLIP模型支持基于语言的图像编辑,例如SDEdit通过用户输入的描边、草图或掩码生成逼真的图像,并通过文本指令编辑现有图像。[226] DiffusionCLIP[227]和Imagic[231]等方法通过调整预训练的扩散模型来编辑目标图像,展示了出色的编辑能力。 [...]

LLMs Meet Multimodal Generation and Editing: A Survey LLMs Meet Multimodal Generation and Editing: A Survey 

在当今这个信息爆炸的时代,人工智能(AI)正以前所未有的速度发展,其中大型语言模型(LLMs)尤为引人注目。这些模型不仅在文本理解方面取得了巨大进步,而且在多模态学习——即结合图像、视频、3D模型和音频等多种信息形式的学习——方面也展现出了巨大潜力。最近,我有幸阅读了一篇关于这一主题的综述文章,现在,我将尝试以通俗易懂的语言,向您介绍这篇综述的精髓。 LLMs与多模态生成:一次革命性的邂逅 首先,让我们来谈谈什么是大型语言模型(LLMs)。想象一下,如果你有一个能够理解和生成人类语言的超级助手,那么这个助手就是基于LLMs的。这些模型通过分析大量的文本数据来学习语言的规律,从而能够完成诸如回答问题、撰写文章甚至生成代码等任务。 然而,LLMs的野心不止于此。研究人员发现,当LLMs与多模态学习结合时,它们能够做的事情远远超出了我们的想象。多模态学习意味着模型不仅要处理文本,还要处理图像、视频、3D模型和音频等其他类型的数据。这种结合为AI开辟了新的可能性,使得机器能够更全面地理解和响应我们的世界。 多模态生成的里程碑 在这篇综述中,作者们详细探讨了LLMs在多模态生成领域的应用,包括以下几个方面: LLMs如何工作? 那么,这些模型是如何工作的呢?简单来说,它们通过以下步骤: 安全性和未来展望 随着LLMs的能力越来越强,安全性也成为一个重要议题。我们需要确保这些模型不会被用于制造虚假信息或有害内容。此外,随着技术的发展,我们期待看到更多创新的应用,比如在教育、娱乐和设计等领域。 结语 LLMs与多模态生成的结合,不仅仅是AI领域的一次技术飞跃,更是为我们打开了一扇通往全新世界的大门。随着研究的深入,我们有理由相信,未来的AI将更加智能、更加安全,也更加贴近我们的生活。让我们拭目以待,AI将如何继续改变我们的世界。 [...]

LLMs与多模态生成及编辑:一项综述LLMs与多模态生成及编辑:一项综述

引言 随着大型语言模型(LLMs)的快速发展,越来越多的研究开始关注将LLMs与多模态学习相结合。多模态学习旨在融合各种信息源,如图像、视频、3D模型和音频,以实现更丰富、更加自然的人机交互。然而,以往的研究主要集中在多模态理解上,本综述将重点放在多模态生成领域,包括图像、视频、3D和音频等。 主要内容概述 多模态生成的背景 人类与物理世界的交互涉及多种模态信息,如语言、视觉和音频。为了实现世界模拟器,模型需要灵活地感知和响应多模态信息。通过结合LLMs和多模态生成技术,我们可以实现更智能、更灵活的生成系统。 关键技术组件 在多模态生成领域,以下是几项关键的技术组件: 多模态生成技术的进展 图像生成 在图像生成方面,LLMs的应用已经取得了显著的进展。例如: 视频生成 视频生成方面的研究同样取得了重要进展,包括: 3D生成 在3D生成领域,LLMs被用于生成和编辑3D模型。例如: 音频生成 音频生成方面,LLMs主要用于生成和编辑音乐、语音等音频内容。例如: AI安全性 在多模态生成领域,AI安全性是一个重要的问题。为了减少有害和偏见内容的生成,研究者们提出了多种方法: 未来发展方向 为了推动多模态生成技术的发展,未来的研究可以探索以下几个方向: 结语 本综述系统性地回顾了LLMs在多模态生成中的应用,涵盖了图像、视频、3D和音频等多个领域。通过详细分析这些技术的进展和应用,我们希望为未来的研究提供指导,并推动人工智能在生成内容方面的发展。 参考文献 [1] Yingqing He, Zhaoyang Liu, Jingye Chen, [...]

生成代码世界模型:结合大型语言模型和蒙特卡罗树搜索生成代码世界模型:结合大型语言模型和蒙特卡罗树搜索

引言 在人工智能领域,能够对世界进行建模是智能体实现目标的关键能力。当面对新的环境时,智能体必须迅速理解其机制,以便制定计划并实现目标。在这种情况下,自然语言条件可以帮助智能体将当前观察与过去的知识联系起来,从而更好地理解世界。因此,通过自然语言向智能体传递关于新任务的信息,具有特别的前景。 近年来,大型语言模型(LLMs)在自然语言处理领域取得了革命性的进展,并为世界建模提供了巨大的机会。然而,将LLMs与世界模型结合的最佳方式尚不明确。在这篇文章中,我们介绍了一种新的方法,即通过编写Python代码来生成RL(强化学习)世界模型。 代码世界模型(Code World Models) 什么是代码世界模型? 代码世界模型(CWM)是由LLMs生成的一种世界模型,这些模型以Python代码的形式存在,专门用于基于模型的强化学习(RL)。与直接使用LLMs进行规划相比,调用代码具有精准、可靠、可解释和高效的优点。然而,编写合适的代码世界模型需要理解复杂的指令、生成具有非平凡逻辑的精确代码,以及通过单元测试和环境轨迹反馈自我调试长程序。 为了解决这些挑战,我们提出了GIF-MCTS(Generate, Improve and Fix with Monte Carlo Tree Search),这是一种新的代码生成策略,用于优化LLMs的代码生成能力。 代码世界模型的框架 在模型基础的强化学习问题设置中,我们将环境表示为具有状态空间、动作空间、转移函数和标量奖励函数的马尔可夫决策过程。世界模型的任务是准确表示转移函数和奖励函数。 我们假设: 代码世界模型基准(CWMB) 为了全面测试不同环境下的世界模型生成,我们定义了一个新的基准,包括18个难度不同的RL环境。每个环境都有相应的自然语言描述和精心设计的轨迹数据集。这个基准旨在通过提供的数据学习准确合成代码世界模型,并在不同复杂度的环境中评估不同的代码生成方法。 GIF-MCTS:生成、改进和修复 我们提出的GIF-MCTS方法使用蒙特卡罗树搜索(MCTS)来生成和优化代码世界模型。GIF-MCTS的主要流程包括选择、扩展、评估和价值回溯。 动作类型 GIF-MCTS方法包括三种主要动作类型: 实验 基准 我们在三个基准上评估了GIF-MCTS的性能:新的CWMB、流行且具有挑战性的编码基准APPS,以及语言条件网格世界RTFM。GIF-MCTS在所有三个基准上都超过了现有方法,包括APPS的“Competition”部分,CWMB的更难连续环境以及RTFM。 实验结果 [...]

Ubuntu上如何配置一个ftp server方便wordpress升级Ubuntu上如何配置一个ftp server方便wordpress升级

在 Ubuntu 上配置一个 FTP 服务器以便于 WordPress 升级,通常使用的是 vsftpd (Very Secure FTP Daemon)。以下是详细步骤: 安装 vsftpd 配置 vsftpd 如果你希望使用被动模式 FTP,还需要添加以下配置: 添加 FTP 用户 启动 vsftpd 配置防火墙 配置 WordPress 使用 FTP 进行升级 根据你的实际情况修改这些配置。 [...]

PHP 8.3 @ Ubuntu 无法开启JIT的问题PHP 8.3 @ Ubuntu 无法开启JIT的问题

首先要注意下这个配置文件: /etc/php/8.3/fpm/conf.d/10-opcache.ini 确保: zend_extension=opcache.so [opcache]opcache.enable=1opcache.enable_cli=1opcache.jit=1255opcache.jit_buffer_size=200M; 其他 OPCache 配置… 重启 apache2 和 php8.3-fpm sudo service php8.3-fpm restart sudo service apache2 restart 如果还是不行,最好是 kill 所有的 php-fpm 进程。 [...]

Ubuntu下用apt安装MySQL后root密码为空Ubuntu下用apt安装MySQL后root密码为空

在Ubuntu下使用apt安装MySQL后,root用户的密码默认是空的。这是因为在安装过程中,MySQL会自动为root用户设置一个随机密码,并将其存储在/etc/mysql/debian.cnf文件中[1]。 要解决这个问题,你可以按照以下步骤操作: 这将显示默认的随机账户和密码,你可以使用这组账户和密码登录MySQL[1]。 请注意,如果你使用的是MySQL 8.0版本,修改root用户密码的命令略有不同,请参考[1]。 Learn more: [...]

RTMP协议(Real-Time Messaging Protocol)RTMP协议(Real-Time Messaging Protocol)

RTMP协议(Real-Time Messaging Protocol)是一种用于在互联网上流式传输音频、视频和数据的通信协议[1]。最初由Macromedia开发为Flash Player和Flash Communication Server之间的流媒体传输的专有协议,后来被Adobe(收购了Macromedia)发布了该协议的不完整版本供公众使用[1]。 RTMP协议有多个变种: RTMP的基本操作是基于TCP的,它维持持久连接并允许低延迟通信。为了平稳地传输流并尽可能多地传输信息,它将流分割成片段,并且片段的大小在客户端和服务器之间动态协商。有时,片段的大小保持不变;音频数据的默认片段大小为64字节,视频数据和大多数其他数据类型的默认片段大小为128字节。来自不同流的片段可以交错和多路复用到单个连接上。由于较长的数据块,该协议每个片段仅携带一个字节的头部,因此开销非常小。然而,在实践中,通常不会交错单个片段。相反,交错和多路复用是在数据包级别上完成的,以确保每个通道满足其带宽、延迟和其他服务质量要求。以这种方式交错的数据包被视为不可分割的,不会在片段级别上交错[1]。 RTMP定义了几个虚拟通道,可以在这些通道上发送和接收数据包,并且这些通道彼此独立运行。例如,有一个用于处理RPC请求和响应的通道,一个用于视频流数据的通道,一个用于音频流数据的通道,一个用于带外控制消息(片段大小协商等)的通道等。在典型的RTMP会话期间,多个通道可能同时处于活动状态。当对RTMP数据进行编码时,会生成一个数据包头部。数据包头部指定了要发送的通道的ID、生成时间戳(如果需要)以及数据包有效载荷的大小。然后,在将其发送到连接上之前,将其实际有效载荷内容(媒体数据)根据当前协商的片段大小进行分段。数据包头部本身永远不会被分段,其大小不计入数据包的第一个片段中的数据。换句话说,只有实际的数据包有效载荷(媒体数据)会被分段[1]。 在更高的层次上,RTMP封装了MP3或AAC音频和FLV1视频多媒体流,并可以使用Action Message Format进行远程过程调用(RPC)。所需的任何RPC服务都是异步进行的,使用单个客户端/服务器请求/响应模型,因此不需要实时通信[2]。 RTMP会话可以使用以下两种方法进行加密: 在RTMP Tunneled(RTMPT)中,RTMP数据通过HTTP进行封装和交换,客户端(媒体播放器)的消息被发送到服务器上的80端口(HTTP的默认端口)[1]。RTMPT中的消息由于HTTP头部的原因比等效的非隧道化RTMP消息要大,但在客户端位于阻止非HTTP和非HTTPS出站流量的防火墙后,RTMPT可能有助于使用RTMP的场景,否则将无法使用非隧道化的RTMP。 RTMP协议的数据包结构如下: Learn more: [...]

RTP(Real-time Transport Protocol)是一种用于实时流媒体传输的协议RTP(Real-time Transport Protocol)是一种用于实时流媒体传输的协议

RTP(Real-time Transport Protocol)是一种用于实时流媒体传输的协议。它是一种面向数据报的协议,用于在IP网络上传输音频和视频等实时数据。RTP协议通常与RTCP(Real-time Transport Control Protocol)一起使用,RTCP用于传输控制信息,例如流媒体的质量反馈和同步信息。 RTP协议的特点和功能包括: RTP协议在实时流媒体传输中起着重要的作用,它可以与其他协议结合使用,例如RTSP(Real-time Streaming Protocol)用于控制流媒体的会话和传输。 Learn more: [...]