Day: April 26, 2024

突破大语言模型的拒绝:DSN攻击方法及集成评估流程突破大语言模型的拒绝:DSN攻击方法及集成评估流程

近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了巨大成功,并在多个领域得到广泛应用。然而,随之而来的安全性问题,特别是LLMs在面对精心设计的”越狱”(jailbreaking)攻击时表现出的脆弱性,引起了研究者和从业者的高度重视。 最近,一篇题为”Don’t Say No: Jailbreaking LLM by Suppressing Refusal”的论文提出了一种新的越狱攻击方法DSN(Don’t Say No),旨在促使LLMs生成肯定的响应,并创新性地增加了抑制拒绝的目标。同时,论文还提出了一个集成评估流程,以更准确地评估攻击的有害性。本文将深入探讨DSN攻击方法的原理、实验结果及其潜在影响。 越狱攻击:安全性的重要挑战 LLMs在识别和避免有害查询方面表现出色,但仍容易受到精心设计的越狱攻击的影响。这些攻击通过精心构造的提示诱导LLMs生成有毒内容,从而使其偏离预期的安全对齐。 现有的越狱攻击方法,如GCG(Generate Confirmed Guesses)攻击,尽管在某些情况下能够成功,但其攻击成功率有限。此外,评估攻击效果也存在挑战,因为很难直接准确地评估攻击的有害性。目前广泛使用的评估方法,如拒绝关键词匹配,存在大量误报和漏报的问题。 DSN攻击:抑制拒绝,提高攻击成功率 为了更好地研究越狱攻击,论文提出了DSN攻击方法。与传统攻击不同,DSN不仅旨在生成肯定的响应,还创新性地增加了抑制拒绝的目标。 具体而言,DSN在损失函数中加入了一个增强项,用于指导LLM的响应远离预定义的拒绝关键词或字符串。为了稳定两个相反目标(生成肯定响应和抑制拒绝)的优化过程,论文采用了Unlikelihood损失来抑制拒绝响应。 通过一系列实验,论文展示了DSN攻击方法在平均和最优结果上都显著优于基线方法GCG。此外,论文还通过调节DSN中的超参数α,研究了拒绝损失项对越狱结果的影响。 集成评估流程:更准确地评估攻击效果 为了克服现有评估方法的局限性,论文提出了一个包含三个模块的集成评估流程:自然语言推理(NLI)矛盾评估、两个第三方LLM评估器(GPT-4和HarmBench)。 通过人工注释300个生成的响应,论文展示了集成评估流程在准确性和可靠性方面优于传统的拒绝匹配方法。论文还比较了不同的聚合策略(如多数投票、单票批准和单票否决)在测试集上的性能。 此外,论文还在新的评估流程下展示了DSN攻击在不同超参数设置下的最大攻击成功率,并分析了DSN攻击在不同受害者模型、评估指标和数据集分割下的转移性。 贡献总结与未来展望 这项研究的主要贡献在于提出了一种新的攻击方法DSN和一个集成评估流程,并通过广泛的实验验证了其有效性。这为提高LLMs的安全性提供了新的视角和方法。 同时,论文也讨论了其方法的局限性,并提出了未来研究的方向,包括: [...]

当心!你聊天机器人背后的“大脑”可能泄露你的隐私!当心!你聊天机器人背后的“大脑”可能泄露你的隐私!

近年来,聊天机器人越来越聪明,能写诗、翻译语言,甚至写代码。这背后的大功臣就是“大型语言模型”(LLMs),它们像一个巨大的“大脑”,存储着海量的信息,可以理解和生成人类语言。 然而,LLMs 也有一个潜在的风险:泄露隐私。它们学习和处理信息的方式可能会暴露你的个人信息,甚至让你说的话被“还原”! 嵌入技术:双刃剑 LLMs 使用一种叫做“嵌入”的技术来存储信息。想象一下,每个词语、句子都被转化成一个独特的“密码”,LLMs 通过这些“密码”来理解和生成文本。 问题在于,这些“密码”并非完全安全。就像密码可以被破解一样,LLMs 生成的“嵌入”也可能被“逆向破解”,从而还原出原始的文本信息。 研究发现:LLMs 隐私风险更高 最近的研究发现,LLMs 在“还原”文本信息方面比传统的语言模型更厉害。这意味着,使用 LLMs 的聊天机器人更容易泄露你的隐私。 例如,LLMs 可以从你输入的文本中“猜出”你的生日、国籍,甚至犯罪记录等敏感信息。这就像你在和聊天机器人聊天时,它却在背后偷偷记下了你的个人信息! 如何保护你的隐私? 那么,我们该如何保护自己的隐私呢?以下是一些建议: 技术发展与隐私保护 科技发展总是伴随着风险,LLMs 也不例外。我们需要在享受科技便利的同时,也要警惕其潜在的风险。 研究人员正在努力开发更安全的 LLMs,例如: 相信在未来,LLMs 会变得更加安全可靠,让我们在享受科技便利的同时,也能安心保护自己的隐私。 [...]

语言的桥梁:AI 如何帮助不同语言之间无障碍交流语言的桥梁:AI 如何帮助不同语言之间无障碍交流

你有没有想过,有一天,语言不再是人与人之间交流的障碍?人工智能(AI)正在努力实现这个目标!今天,我们就来聊聊一项叫做“跨语言迁移”的技术,它可以让 AI 在不同语言之间自由穿梭,就像搭建了一座语言的桥梁。 跨语言迁移:打破语言壁垒 想象一下,你正在用中文阅读一篇有趣的文章,但你的朋友只会英文。这时,AI 就能派上用场了!它可以将这篇文章翻译成英文,让你的朋友也能理解文章的内容。这就是跨语言迁移的魔力。 词汇和语法:语言的基石 要实现跨语言迁移,AI 需要掌握两种语言的词汇和语法知识。词汇就像一块块砖头,语法则是搭建房子的规则。只有同时掌握这两者,AI 才能真正理解语言的含义,并进行准确的翻译。 LS-mBERT:语言的翻译官 在这项研究中,科学家们开发了一个名为“LS-mBERT”的 AI 模型。它就像一位专业的翻译官,能够在不同语言之间进行转换。LS-mBERT 的特别之处在于,它同时利用了词汇和语法知识,让翻译结果更加准确。 LS-mBERT 的工作原理 LS-mBERT 的工作原理可以分为以下几个步骤: 实验结果:令人惊喜的进步 科学家们用 LS-mBERT 进行了一系列实验,结果显示它在文本分类、命名实体识别和语义解析等任务上都表现出色,甚至超过了现有的其他 AI 模型。 未来展望:AI 翻译的无限可能 LS-mBERT 的成功只是 AI [...]

解密Tele-FLM:高效的多语言大型语言模型解密Tele-FLM:高效的多语言大型语言模型

近年来,大型语言模型(LLM)在语言理解和生成方面展现出了惊人的能力,应用范围也越来越广泛。然而,如何高效地将LLM扩展到超过500亿个参数,同时最小化试错成本和计算资源消耗,一直是业界难题。今天,我们将介绍Tele-FLM(也称为FLM2),一个520亿参数的开源多语言大型语言模型,它为高效扩展LLM提供了一种新的思路。 Tele-FLM:解决LLM扩展难题 Tele-FLM旨在解决以下几个关键问题: Tele-FLM的技术亮点 Tele-FLM的成功得益于以下几个关键技术: Tele-FLM的性能表现 Tele-FLM在多个基准测试中展现了出色的性能,包括: Tele-FLM的未来展望 Tele-FLM的开发者计划继续改进模型,探索更大规模的模型训练,并开发更高效的训练技术。他们也致力于将Tele-FLM应用于更广泛的领域,例如聊天机器人、虚拟助手和教育工具等。 总结 Tele-FLM为高效扩展LLM提供了一种新的思路,其开源共享的特性也为学术界和工业界提供了宝贵的参考。相信随着技术的不断发展,Tele-FLM将在更多领域发挥重要作用,推动人工智能的进步。 [...]

GOVSIM: 探索大型语言模型在合作决策中的潜力GOVSIM: 探索大型语言模型在合作决策中的潜力

随着大型语言模型(Large Language Models, LLMs)在人工智能领域的快速发展,它们在复杂系统中扮演着越来越重要的角色。然而,在合作环境中确保LLMs的安全决策仍然是一个巨大的挑战。一篇名为”Governance of the Commons Simulation: Evaluating Large Language Models in Cooperative Decision-Making”的论文引入了一个名为”Governance of the Commons Simulation (GOVSIM)”的模拟平台,旨在研究LLMs在多智能体资源分享场景中的策略互动和合作决策能力。 GOVSIM: 多智能体资源管理模拟平台 GOVSIM是一个专门设计的模拟环境,用于评估基于LLM的智能体在管理共享资源方面的能力。在这个环境中,智能体需要在一个有限再生能力的共享资源池中进行策略推理、伦理决策和谈判。过度使用或提取超出可持续限制的资源会导致资源退化或完全枯竭。 模拟过程包括多个阶段,如策略制定、资源收集和集体讨论,智能体在这些阶段中互动并做出决策。研究者定义了多个评估指标,如生存月份数、总收益、平等性、效率和过度使用率,以衡量智能体的合作行为和社会结果。 智能体框架和实验设置 为了将不同的LLMs集成到GOVSIM中,研究者使用生成式代理框架(Generative Agent framework)创建了一个标准代理。他们测试了15种不同的LLMs,包括开放权重和封闭权重模型,并分析了它们在模拟中的表现。 除了默认设置的实验,研究者还进行了扰动测试,通过引入具有更激进动态的新智能体来评估社区的适应性和合作行为。他们还引入了”普遍化假设”来提高LLM智能体对长期社区结果的认识,从而改善可持续性结果。 关键研究结果和未来方向 [...]

LayerSkip: 大型语言模型的高效推理解决方案LayerSkip: 大型语言模型的高效推理解决方案

近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了显著成功。然而,这些模型在部署时面临着高计算和内存需求的挑战,导致了高昂的财务成本和能源消耗。为了解决这一问题,研究人员提出了各种加速技术,但它们往往会显著降低模型的准确性,并且可能需要专门的硬件或软件支持。 最近,一篇名为”LayerSkip: An End-to-end Solution for Accelerating Inference of Large Language Models”的论文提出了一种新颖的端到端解决方案,旨在加速LLMs的推理过程,同时保持甚至提高模型的准确性。本文将深入探讨LayerSkip方法的原理、实验结果及其潜在影响。 LayerSkip方法概述 LayerSkip方法包括三个主要阶段:训练时的层dropout和早期退出损失、推理时的早期退出、以及自我推测解码。 在训练阶段,LayerSkip对模型应用层dropout,即随机跳过一些层,并使用不同的dropout率,对较早的层使用较低的dropout率,而对较后的层使用较高的dropout率。此外,还引入了早期退出损失,使得所有transformer层共享同一个退出点,并通过训练使模型的语言模型头能够理解来自不同层的嵌入表示。 在推理阶段,LayerSkip采用早期退出策略,即仅运行模型的前几层,然后直接跳转到语言模型头,从而减少每次生成令牌所需的层数。这样可以显著减少计算量,提高推理速度。 为了进一步提高推理的准确性,LayerSkip提出了一种自我推测解码算法。该算法首先使用模型的前几层生成一系列草稿令牌,然后使用剩余的层来验证这些草稿令牌,并在必要时进行纠正。通过共享的计算和激活,这种方法可以减少内存占用并提高效率。 实验结果 论文在不同大小的Llama模型上进行了广泛的实验,涵盖了预训练、持续预训练、特定数据领域微调和特定任务微调等不同类型的训练。实验任务包括摘要生成、编程和语义解析等。 结果表明,LayerSkip方法在这些任务上都取得了显著的速度提升,最高可达2.16倍,同时保持了与原始模型相当甚至更好的准确性。这证明了LayerSkip作为一种通用的LLMs加速解决方案的有效性。 未来展望 尽管LayerSkip已经展现了巨大的潜力,但仍有一些方面值得进一步探索。例如,可以研究如何进一步提高早期退出层的准确性,探索动态退出层选择策略,以及将LayerSkip与其他参数高效技术结合以进一步提高效率。 此外,还需要在更多类型的任务和模型上验证LayerSkip的通用性,并研究如何减少对超参数调整的需求,使该方法更易于应用。从环境影响的角度来看,评估LayerSkip在减少LLMs能源消耗方面的潜力也是一个有意义的方向。 小结 LayerSkip为加速大型语言模型的推理提供了一种新颖而有效的解决方案。通过在训练时引入层dropout和早期退出损失,在推理时采用早期退出和自我推测解码,LayerSkip在保持准确性的同时显著提高了推理速度。这项研究为推动LLMs在资源受限设备上的应用迈出了重要一步,有望促进自然语言处理技术的普及和民主化。随着进一步的优化和扩展,LayerSkip有望在更广泛的场景中发挥其潜力,为人工智能的发展做出贡献。 [...]

用注意力机制提升文本匹配:FA 和 SFA 模块详解用注意力机制提升文本匹配:FA 和 SFA 模块详解

在信息爆炸的时代,文本匹配技术在各种应用中发挥着重要作用,例如搜索引擎、问答系统和推荐系统等。轻量级文本匹配模型因其参数量小、推理速度快等优点而受到关注。然而,如何在轻量级模型中有效地捕获文本的语义信息一直是一个挑战。 这篇博客文章将介绍两种新的注意力机制模块:特征注意力 (FA) 和选择性特征注意力 (SFA),它们可以帮助轻量级模型更好地理解文本的语义信息,从而提高文本匹配的准确率。 1. 问题定义 轻量级文本匹配模型通常使用孪生网络结构,该结构将两个文本编码成向量,然后比较这两个向量之间的相似度。然而,这种方法忽略了文本中嵌入特征之间的复杂关系。 FA 和 SFA 模块旨在解决这一问题,它们可以帮助模型更好地捕获嵌入特征之间的依赖关系,从而提高文本匹配的准确率。 2. FA 模块 FA 模块采用了一种叫做“挤压-激励”的技术,它可以动态调整对个体特征的强调,使网络更关注对分类有重要贡献的特征。 具体来说,FA 模块首先使用平均池化将特征图压缩成一个特征描述符,然后通过全连接层生成一个激活向量,该向量指示了对最终分类有显著贡献的特征。最后,通过元素级乘法将激活向量与原始特征相乘,以生成一个更加精细调整的嵌入特征表示。 3. SFA 模块 SFA 模块在 FA 的基础上,引入了选择性特征注意力机制。该机制使用堆叠的 BiGRU Inception 结构,以实现多尺度语义提取,并通过“选择”机制动态集中注意力。 具体来说,SFA [...]